Switchable Microvalves Employing a Conducting Polymer and Their Automatic Operation in Conjunction with Micropumps with a Superabsorbent Polymer.

ACS Appl Mater Interfaces

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.

Published: August 2020

Automated microfluidic devices integrated with microvalves and micropumps were developed. To realize an efficient and automatic control of solution transport, we newly developed microvalves comprising a polypyrrole (PPy) film electropolymerized on patterned platinum electrodes and doped with a surfactant. The surface of the doped PPy film exhibits a nearly hydrophobic state or a hydrophilic state when oxidized or reduced under the application of an appropriate potential, enabling the control of the solution transport via capillary action. The simple structure and fabrication of the microvalves facilitated the integration of many valves in various flow channel structures. To improve the performance, simple suction and injection micropumps with freeze-dried discs made of a superabsorbent polymer (SAP) were additionally incorporated along with the microvalves. The former withdraws the solution by directly absorbing it onto the SAP, whereas the latter applies a pressure to the solution through an elastic diaphragm by absorbing a priming solution into the SAP. The significant volume changes of the SAP discs enabled an efficient transport of the solutions. Repeated injection and withdrawal of the solutions in and out of a reaction chamber were demonstrated using four injection and suction pumps and eight valves.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c09419DOI Listing

Publication Analysis

Top Keywords

superabsorbent polymer
8
control solution
8
solution transport
8
ppy film
8
solution
5
switchable microvalves
4
microvalves employing
4
employing conducting
4
conducting polymer
4
polymer automatic
4

Similar Publications

The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

An Early-Stage Economic Evaluation of Superabsorbent Wound Dressings for the Management of Moderately to Highly Exuding Leg Ulcers in Slovakian Settings.

Adv Skin Wound Care

January 2025

At Paul Hartmann AG, Heidenheim, Germany, Vladica M. Veličković, MD, is Head of Evidence Generation; Anna Serafin, PhD, is Senior Project Manager Clinical Investigation; Yana Arlouskaya, MS, is Project Manager Clinical Investigations; and Thurid-Christiane Milde, MBA, is Senior Manager Global HEOR Support, Wound Care. Beáta Grešš Halász, PhD, is Lecturer, Department of Nursing, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia.

Background: The management of chronic leg ulcers, including venous leg ulcers (VLUs), causes a considerable economic and clinical burden to healthcare systems. Factors such as nursing time, hospital care, and wound dressings account for approximately 85% of the total cost. Superabsorbent dressings (eg, superabsorbent polymers [SAPs]) are recommended as a first-line treatment for moderately to highly exuding VLUs.

View Article and Find Full Text PDF

Amide modified cellulose-g-poly acrylic acid as a supple superabsorbent for water retention and soil conditioner.

Int J Biol Macromol

January 2025

Department of Chemistry, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran. Electronic address:

Acrylamide has high hydrophilic properties due to the presence of hydrophilic amide functional groups and is frequently used to synthesize superabsorbents. However, the toxic and carcinogenic properties of acrylamide have caused environmental concerns. The main goal of this paper is the synthesis of superabsorbent with high water absorption from biodegradable and biocompatible cellulose polymer containing amide groups in the backbone of it instead of grafting harmful acrylamide monomers to cellulose.

View Article and Find Full Text PDF

Development and Verification of a Vertical Graphene Sensor for Tunnel Leakage Monitoring.

ACS Appl Mater Interfaces

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.

To achieve accurate monitoring of water leakage in tunnels, a new vertical graphene sensor is designed and developed. The sensor operates on the principle that the superabsorbent polymer (SAP) swells dramatically upon water absorption. This swelling induces deformation in the vertical graphene (VG) thin film, highly sensitive to such changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!