Novel interpretation of recent experiments on the dynamics of domain walls along ferrimagnetic strips.

J Phys Condens Matter

Dpto. Electricidad y Electrónica, Universidad de Valladolid, 47011 Valladolid, Spain.

Published: August 2020

Domain wall motion along ferrimagnets is evaluated using micromagnetic simulations and a collective-coordinates model, both considering two sublattices with independent parameters. Analytical expressions are derived for strips on top of either a heavy metal or a substrate with negligible interfacial Dzyaloshinskii-Moriya interaction. The work focuses its findings in this latter case, with a field-driven domain wall motion depicting precessional dynamics which become rigid at the angular momentum compensation temperature, and a current-driven dynamics presenting more complex behavior, depending on the polarization factors for each sublattice. Importantly, our analyses provide also novel interpretation of recent evidence on current-driven domain wall motion, where walls move either along or against the current depending on temperature. Besides, our approach is able to substantiate the large non-adiabatic effective parameters found for these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aba7ebDOI Listing

Publication Analysis

Top Keywords

domain wall
12
wall motion
12
novel interpretation
8
interpretation experiments
4
experiments dynamics
4
domain
4
dynamics domain
4
domain walls
4
walls ferrimagnetic
4
ferrimagnetic strips
4

Similar Publications

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.

View Article and Find Full Text PDF

Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.

View Article and Find Full Text PDF

Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat.

View Article and Find Full Text PDF

Deep eutectic solvent enhances antibacterial activity of a modular lytic enzyme against Acinetobacter baumannii.

Sci Rep

January 2025

Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.

In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!