Asymmetric Two-Layer Porous Membrane for Gas Separation.

J Phys Chem Lett

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

Published: August 2020

We present that the porous two-layer membranes of graphene and hexagonal boron nitride (-BN) are promising for gas mixture separation. For the two-layer membranes, the mechanisms of the gas separation are (i) the different adsorption properties of gases on two membranes inducing a permeation flux difference from one side to the other and (ii) the asymmetric potential energy curves (potential energy of a gas molecule vs distance between the pore center and a gas molecule) of a two-layer membrane leading to a potential energy difference, which can affect gas permeation through the pore. As a concrete example, we explore the gas separation of CO and CH by the two-layer membrane using molecular dynamics simulations. Finally, on the basis of the distinctive permeation rates in the two directions, a gas separation system with two back-to-back arrayed graphene/h-BN membranes with big pores is designed to realize gas separation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c01797DOI Listing

Publication Analysis

Top Keywords

gas separation
20
potential energy
12
gas
9
two-layer membranes
8
separation two-layer
8
gas molecule
8
two-layer membrane
8
separation
6
asymmetric two-layer
4
two-layer porous
4

Similar Publications

The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.

View Article and Find Full Text PDF

Poor breathability, inadequate flexibility, bulky wearability, and insufficient gas-adsorption capacity always limit the developments and applications of conventional chemical protective clothing (CPC). To create a lightweight, breathable, and flexible fabric with a high gas-absorption capacity, activated carbon (AC)-loaded poly(m-phenylene isophthalamide) (PMIA) porous composite fibres were fabricated from a mixed wet-spinning process integrated with a solvent-free phase separation process. By manipulating the pore parameters of as-spun composite fibres, the exposure-immobilization of AC particles on the fibre surface can offer a higher gas-absorption capacity and better AC-loading stability.

View Article and Find Full Text PDF

As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility.

View Article and Find Full Text PDF

Fingerprinting of Volatile Organic Compounds in Old and Commercial Apple Cultivars by HS-SPME GC/GC-ToF-MS.

Int J Mol Sci

December 2024

Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.

Flavor is the most important feature consumers use to examine fruit ripeness, and it also has an important influence on taste sensation. Nowadays, more and more consumers pay much attention not only to the appearance but also to the fruit's aroma. Exploiting the potential of headspace solid-phase microextraction (HS-SPME) combined with sensitive two-dimensional gas chromatography and the time-of-flight mass spectrometry (GC/GC-ToF-MS) method within 30 old/traditional cultivars of apples ( Borkh) coming from the same germplasm and 7 modern/commercial cultivars, 119 volatile organic compounds (VOCs) were identified.

View Article and Find Full Text PDF

The increasing popularity of plant-based drinks has led to an expanded consumer market. However, available quality control technologies for plant-based drinks are time-consuming and expensive. Two alternative quality control methods, gas chromatography with ion mobility spectrometry (GC-IMS) and an electronic nose, were used to assess 111 plant-based drink samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!