Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Direct analysis of chemicals on a surface using mass spectrometry (MS) is of great importance in forensics, food and drug safety, environmental monitoring, and defense. Solvent extraction-based surface analysis offers a convenient way of controlling the desorption conditions and applying internal standards. To date, it mainly relies on a separate electrospray process to nebulize and ionize the solvents. Here, we report a simple and stand-alone ionization system for the solvent extraction-based surface analysis without the need for high voltage, based on vibrating sharp-edge spray ionization (VSSI).
Methods: We modified the original VSSI device and developed a stand-alone, integrated surface sampling, and ionization system for MS analysis. By incorporating a micropipette-based solvent dispenser with the VSSI device, the new system performs solvent extraction and ionization, and still maintains a small footprint.
Results: We demonstrated a four order-of-magnitude linear response for glucose spotted on a glass surface with a limit of detection (LOD) of 0.1 pg/mm . We further characterized the performance of this method with a series of compounds and demonstrated a similar LOD to literature values obtained by desorption electrospray ionization. Finally, we applied this method to quantitatively measure the concentration of a pesticide ametryn on spinach surfaces. We demonstrated good linearity (R = 0.99) for ametryn with surface densities in the range of 8-800 pg/mm and an LOD of 9 pg/mm .
Conclusions: We have demonstrated a simple, effective, direct ambient-ionization method that is highly sensitive to molecules on a wide range of surfaces. The flexibility, small footprint, low cost, and voltage-free nature of this method make it an attractive technique for direct surface sample analysis using MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811172 | PMC |
http://dx.doi.org/10.1002/rcm.8902 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!