Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Classically, visual processing is described as a cascade of local feedforward computations. Feedforward Convolutional Neural Networks (ffCNNs) have shown how powerful such models can be. However, using visual crowding as a well-controlled challenge, we previously showed that no classic model of vision, including ffCNNs, can explain human global shape processing. Here, we show that Capsule Neural Networks (CapsNets), combining ffCNNs with recurrent grouping and segmentation, solve this challenge. We also show that ffCNNs and standard recurrent CNNs do not, suggesting that the grouping and segmentation capabilities of CapsNets are crucial. Furthermore, we provide psychophysical evidence that grouping and segmentation are implemented recurrently in humans, and show that CapsNets reproduce these results well. We discuss why recurrence seems needed to implement grouping and segmentation efficiently. Together, we provide mutually reinforcing psychophysical and computational evidence that a recurrent grouping and segmentation process is essential to understand the visual system and create better models that harness global shape computations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394447 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1008017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!