AI Article Synopsis

Article Abstract

A new approach toward cancer therapy is the use of cancer vaccine, yet the different molecular bases of cancers, reduce the effectiveness of this approach. In this article, we aim to use matrix metalloproteinase-9 protein (MMP9) which is an essential molecule in the survival and metastasis of all types of cancers as a target for universal cancer vaccine design. The reference sequence of MMP9 protein was obtained from NCBI databases. Furthermore, the B-cell and T cell-related peptides were analyzed using the IEDB website and other related soft wares. The best candidate peptides were then visualized using chimera software. Three peptides were found to be good candidates for interactions with B cells (SLPE, RLYT, and PALPR), while 10 peptides were found as good targets for interactions with MHC1 and another 10 peptides founded suitable for interactions with MHC2 with population coverages of 94.77 and 90.67%, respectively. Finally, the immune response simulation and molecular docking were done using the C-IMMSIM simulator and AutoDock Vina to confirm the effectiveness of the proposed vaccine. By the end of this project: twenty-three peptide-based vaccine was designed for use as a universal cancer vaccine which has a high world population coverage for MHC1 (94.77%) and MHC2 (90.67%) related alleles.

Download full-text PDF

Source
http://dx.doi.org/10.1080/25785826.2020.1794165DOI Listing

Publication Analysis

Top Keywords

cancer vaccine
16
universal cancer
12
matrix metalloproteinase-9
8
metalloproteinase-9 protein
8
peptides good
8
vaccine
6
cancer
5
peptides
5
immunoinformatics design
4
design multiepitopes
4

Similar Publications

Cytomegalovirus (CMV) is a leading cause of congenital infections and significant health complications in immunocompromised individuals. With no licensed CMV vaccine available, the development of the mRNA-1647 offers promising advancements in CMV prevention. We have reviewed results from Phase 1 and 2 clinical trials of the mRNA-1647 vaccine, demonstrating robust immune responses in both seronegative and seropositive participants.

View Article and Find Full Text PDF

Background: Helicobacter pylori (H. pylori), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against H.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!