Nuclear Membrane Rupture and Its Consequences.

Annu Rev Cell Dev Biol

Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; email:

Published: October 2020

The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191142PMC
http://dx.doi.org/10.1146/annurev-cellbio-020520-120627DOI Listing

Publication Analysis

Top Keywords

nuclear membrane
20
membrane rupture
12
nuclear
11
cultured cells
8
membrane ruptures
8
loss nuclear
8
rupture consequences
4
consequences nuclear
4
nuclear envelope
4
envelope depicted
4

Similar Publications

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

Assessing the Impacts of Drug Loading and Polymer Type on Dissolution Behavior and Diffusive Flux of GDC-6893 Amorphous Solid Dispersions.

J Pharm Sci

January 2025

Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:

It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).

View Article and Find Full Text PDF

Serum starvation induces cytosolic DNA trafficking via exosome and autophagy-lysosome pathway in microglia.

Biochim Biophys Acta Mol Cell Res

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:

The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!