Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: An accumulating amount of evidence has suggested that there is a contributive role of sympathetic nervous hyperactivity in the pathogenesis of chronic kidney disease (CKD). α1-AR promotes an increase in calcium levels in podocytes and adjusts podocyte contraction. Changes in TRPC6 expression and function can directly affect the podocyte cytoskeleton, which is a key component in podocyte injury. This study proposed to clarify the correlation between α1-AR activation-induced signal cascade reaction and TRPC6 in human podocytes.
Methods: Human podocytes were incubated with the calcium probe Fluo-3/AM. Next, the effects of the α1-AR agonists or antagonists and nonselective TRPC6 blockers on intracellular calcium were observed under laser confocal microscopy. FITC-phalloidin was employed to stain podocytes, and the change of F-actin under the α1-AR activation condition was observed.
Results: The α1-AR agonist PE (phenylephrine hydrochloride) induced an increase in intracellular Ca2+ ([Ca2+]i) in human podocytes. Moreover, the downregulation of TRPC6 by siRNA or TRPC blocker could attenuate the PE-induced [Ca2+]i elevation in a phospholipase C (PLC)-dependent pattern. When podocytes were stimulated to the PE, their F-actin fiber cytoskeletal structure was lost. PE subsequently increased the expression of RhoA, and the TRPC6-dependent Ca2+ influx was involved in this process. The abnormal activation of RhoA could result in disturbance of the podocyte skeleton structure, thus leading to podocyte injury.
Conclusions: We concluded that TRPC6 is involved in α1-AR activation-induced calcium signal changes in podocytes. Meanwhile, the α1-AR agonists can destroy the cell's cytoskeletal structure, which is mediated by TRPC6 via the RhoA/ROCK pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21037/apm-19-602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!