Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS?

J Med Chem

Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), Munich and Max-Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany.

Published: November 2020

Cathepsin C (CatC) is a cysteine dipeptidyl aminopeptidase that activates most of tissue-degrading elastase-related serine proteases. Thus, CatC appears as a potential therapeutic target to impair protease-driven tissue degradation in chronic inflammatory and autoimmune diseases. A depletion of proinflammatory elastase-related proteases in neutrophils is observed in patients with CatC deficiency (Papillon-Lefèvre syndrome). To address and counterbalance unwanted effects of elastase-related proteases, chemical inhibitors of CatC are being evaluated in preclinical and clinical trials. Neutrophils may contribute to the diffuse alveolar inflammation seen in acute respiratory distress syndrome (ARDS) which is currently a growing challenge for intensive care units due to the outbreak of the COVID-19 pandemic. Elimination of elastase-related neutrophil proteases may reduce the progression of lung injury in these patients. Pharmacological CatC inhibition could be a potential therapeutic strategy to prevent the irreversible pulmonary failure threatening the life of COVID-19 patients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c00776DOI Listing

Publication Analysis

Top Keywords

potential therapeutic
8
elastase-related proteases
8
catc
5
lung protection
4
protection cathepsin
4
cathepsin inhibition
4
inhibition hope
4
hope covid-19
4
covid-19 ards?
4
ards? cathepsin
4

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Importance: There is a lack of long-term efficacy and safety data on hereditary transthyretin amyloidosis with polyneuropathy (hATTR-PN) and on RNA interference (RNAi) therapeutics in general. This study presents the longest-term data to date on patisiran for hATTR-PN.

Objective: To present the long-term efficacy and safety of patisiran in adults with hATTR-PN.

View Article and Find Full Text PDF

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.

View Article and Find Full Text PDF

CRISPR-Cas9 Targeting PCSK9: A Promising Therapeutic Approach for Atherosclerosis.

J Cardiovasc Transl Res

January 2025

Department of Cardiology, Affiliated Hospital of Southwest Medical University, No.1 Section 1, Xiang Lin Road, Longmatan District, Luzhou, Sichuan, 646000, China.

CRISPR-Cas9 gene editing technology, as an innovative biomedical tool, holds significant potential in the prevention and treatment of atherosclerosis. By precisely editing key genes such as PCSK9, CRISPR-Cas9 offers the possibility of long-term regulation of low-density lipoprotein cholesterol (LDL-C), which may reduce the risk of cardiovascular diseases. Early clinical studies of gene editing therapies like VERVE-101 have yielded encouraging results, highlighting both the feasibility and potential efficacy of this technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!