Fast Detection of Single Liposomes Using a Combined Nanopore Microelectrode Sensor.

Anal Chem

Department of Chemistry, University of Washington, Seattle Washington 98195-1700 United States.

Published: August 2020

AI Article Synopsis

Article Abstract

Here we report the development and characterization of a high throughput sensing device for single liposome detection. The device incorporates a quartz nanopipette positioned near a carbon-fiber microelectrode (CFE). Liposomes (∼200 nm diameter) loaded with Fe(CN) are driven out of the nanopipette orifice where they are sensed as a transient decrease in the measured ionic current (resistive-pulse analysis). Simultaneously, a redox signal is collected at the CFE due to the release of internalized redox molecules from translocating liposomes to the CFE surface. Interestingly, we observed that the redox signals arise coincidently with resistive-pulses, suggesting that leakage of liposome contents occurs translocation. Further investigation suggested that liposome disruption occurs at the nanopore orifice and is not dependent on the nanopore electric field. The probability of this disruption appears to rely on the velocity of fluid flow in the nanopore as well as the nanopore geometry. The high-throughput nature of our technique may prove useful for rapid analysis of liposomal drug formulations or rapid, robust, direct measurement of neurotransmitter concentration in isolated vesicles from neurons and neuroendocrine cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c01993DOI Listing

Publication Analysis

Top Keywords

nanopore
5
fast detection
4
detection single
4
single liposomes
4
liposomes combined
4
combined nanopore
4
nanopore microelectrode
4
microelectrode sensor
4
sensor report
4
report development
4

Similar Publications

Nanopore sensing is widely used for single-molecule detection, originally applied to nucleic acids and now extended to protein sensing. Our study focuses on the complex conformational changes of peptides in nanopores, which may have implications for peptide fingerprinting and protein identification. Specifically, we investigated the interaction of a β-hairpin peptide (SV28) within an α-hemolysin (αHL) nanopore.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Advances in next-generation sequencing have allowed the use of DNA obtained from unusual sources for wildlife studies. However, these samples have been used predominantly to sequence mitochondrial DNA for species identification while population genetics analyses have been rare. Since next-generation sequencing allows indiscriminate detection of all DNA fragments in a sample, technically it should be possible to sequence whole genomes of animals from environmental samples.

View Article and Find Full Text PDF

Assembly and comparative analysis of the complete mitochondrial genome of red raspberry (Rubus idaeus L.) revealing repeat-mediated recombination and gene transfer.

BMC Plant Biol

January 2025

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.

Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.

View Article and Find Full Text PDF

Nanoscale photoswitchable proteins could facilitate precise spatiotemporal control of transmembrane communication and support studies in synthetic biology, neuroscience and bioelectronics. Here, through covalent modification of the α-haemolysin protein pore with arylazopyrazole photoswitches, we produced 'photopores' that transition between iontronic resistor and diode modes in response to irradiation at orthogonal wavelengths. In the diode mode, a low-leak OFF-state nanopore exhibits a reversible increase in unitary conductance of more than 20-fold upon irradiation at 365 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!