Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field.

Plant Cell Environ

School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hefei, China.

Published: November 2020

AI Article Synopsis

  • Plants face environmental stresses and have developed mechanisms to manage these challenges, including “off-switch” responses to stop stress reactions when conditions improve.
  • Researchers investigated the rice gene OsPQT3 and created knockout mutants using CRISPR-Cas9, finding that these mutants showed increased resistance to oxidative and salt stress, as well as improved agronomic performance, particularly under salt stress.
  • The results indicate that OsPQT3 is functionally similar to the Arabidopsis gene AtPQT3, suggesting its potential for enhancing crop resilience through gene editing.

Article Abstract

Plants frequently suffer from environmental stresses in nature and have evolved sophisticated and efficient mechanisms to cope with the stresses. To balance between growth and stress response, plants are equipped with efficient means to switch off the activated stress responses when stresses diminish. We previously revealed such an off-switch mechanism conferred by Arabidopsis PARAQUAT TOLERANCE 3 (AtPQT3) encoding an E3 ubiquitin ligase, knockout of which significantly enhances resistance to abiotic stresses. To explore whether the rice homologue OsPQT3 is functionally conserved, we generated three knockout mutants with CRISPR-Cas9 technology. The OsPQT3 knockout mutants (ospqt3) display enhanced resistance to oxidative and salt stress with elevated expression of OsGPX1, OsAPX1 and OsSOD1. More importantly, the ospqt3 mutants show significantly enhanced agronomic performance with higher yield compared with the wild type under salt stress in greenhouse as well as in field conditions. We further showed that OsPQT3 expression rapidly decreased in response to oxidative and other abiotic stresses as AtPQT3 does. Taken together, these results show that OsPQT3 is functionally well conserved in rice as an off-switch in stress response as AtPQT3 in Arabidopsis. Therefore, PQT3 locus provides a promising candidate for crop improvement with enhanced stress resistance by gene editing technology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13856DOI Listing

Publication Analysis

Top Keywords

abiotic stresses
12
enhanced resistance
8
resistance abiotic
8
stress response
8
ospqt3 functionally
8
knockout mutants
8
salt stress
8
stresses
6
stress
6
ospqt3
6

Similar Publications

Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.

Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.

View Article and Find Full Text PDF

Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis.

Adv Sci (Weinh)

January 2025

School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.

View Article and Find Full Text PDF

Objectives: Our aim was to evaluate the comparative effects of sertraline and vortioxetine against stress-induced brain injury in rats.

Methods: The rats were assigned to a nonstress group (NSG), stress-treated control (StC), sertraline + stress (SSt), and vortioxetine + stress (VSt) groups. Sertraline and vortioxetine (10 mg/kg) were given orally by gavage to the SSt and VSt groups.

View Article and Find Full Text PDF

Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!