Ovarian cancer (OC) is associated with poor survival because there are a limited number of effective therapies. Two processes key to OC progression, angiogenesis and immune evasion, act synergistically to promote tumor progression. Tumor-associated angiogenesis promotes immune evasion, and tumor-related immune responses in the peritoneal cavity and tumor microenvironment (TME) affect neovascular formation. Therefore, suppressing the angiogenic pathways could facilitate the arrival of immune effector cells and reduce the presence of myeloid cells involved in immune suppression. To date, clinical studies have shown significant benefits with antiangiogenic therapy as first-line therapy in OC, as well as in recurrent disease, and the vascular endothelial growth factor (VEGF) inhibitor bevacizumab is now an established therapy. Clinical data with immunomodulators in OC are more limited, but suggest that they could benefit some patients with recurrent disease. The preliminary results of two phase III trials have shown that the addition of immunomodulators to chemotherapy does not improve progression-free survival. For this reason, it could be interesting to look for synergistic effects between immunomodulators and other active drugs in OC. Since bevacizumab is approved for use in OC, and is tolerable when used in combination with immunotherapy in other indications, a number of clinical studies are underway to investigate the use of bevacizumab in combination with immunotherapeutic agents in OC. This strategy seeks to normalize the TME via the anti-VEGF actions of bevacizumab, while simultaneously stimulating the immune response via the immunotherapy. Results of these studies are awaited with interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524856PMC
http://dx.doi.org/10.1007/s10456-020-09734-wDOI Listing

Publication Analysis

Top Keywords

immune evasion
8
clinical studies
8
recurrent disease
8
immune
6
antiangiogenics good
4
good 'partner'
4
'partner' immunotherapy
4
immunotherapy ovarian
4
ovarian cancer?
4
cancer? ovarian
4

Similar Publications

Head and neck cancer is a deadly disease with over 500,000 cases annually worldwide. Metastatic head and neck cancer accounts for a large proportion of the mortality associated with this disease. Many advances have been made in our understanding of the mechanisms of metastasis.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health issue characterized by poor prognosis and complex tumor biology. One of the critical components of the HCC tumor microenvironment (TME) is tumor-associated macrophages (TAMs), which play a pivotal role in modulating tumor growth, immune evasion, and metastasis. Macrophages are divided into two major subtypes: pro-inflammatory M1 and anti-inflammatory M2, both of which may exist in TME with altered function and proportion.

View Article and Find Full Text PDF

Synergistic Potential of Antibiotics with Cancer Treatments.

Cancers (Basel)

December 2024

Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy.

Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results.

View Article and Find Full Text PDF

The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications.

Cancers (Basel)

December 2024

Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.

The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients.

View Article and Find Full Text PDF

Chemoresistance in Pancreatic Cancer: The Role of Adipose-Derived Mesenchymal Stem Cells and Key Resistance Genes.

Int J Mol Sci

January 2025

Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.

Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!