We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370956PMC
http://dx.doi.org/10.3847/1538-4357/ab23f1DOI Listing

Publication Analysis

Top Keywords

solar wind
24
slow speed
12
speed solar
12
element abundances
8
elements fip
8
high-fip elements
8
interchange reconnection
8
solar
7
wind
6
elements
5

Similar Publications

Human-Caused High Direct Mortality in Birds: Unsustainable Trends and Ameliorative Actions.

Animals (Basel)

December 2024

School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.

Human interaction with birds has never been more positive and supported by so many private citizens and professional groups. However, direct mortality of birds from anthropogenic causes has increased and has led to significant annual losses of birds. We know of the crucial impact of habitat loss on the survival of birds and its effects on biodiversity.

View Article and Find Full Text PDF

Optimizing the installation parameters of photovoltaic panels in a photovoltaic array to reduce dust accumulation, thereby enhancing their power generation, is a crucial research topic in the construction of solar power stations in desert regions. Utilizing a series of wind tunnel experiments on a photovoltaic array comprising four equally sized panels, this study assessed how variations in tilt angle, mounting height, spacing, and incoming flow direction influence both the accumulation mass of dust and the particle size distribution in a photovoltaic array. The results indicate that the dust accumulation on the first panel exponential growth with increasing tilt angle, incoming flow angles, and height, while subsequent panels displayed a trend of initial increase followed by a decrease, with a maximum increasing ratio achieved at specific installation configurations, the difference of dust mass on each panel can even be several times.

View Article and Find Full Text PDF

Unraveling climate change-induced compound low-solar-low-wind extremes in China.

Natl Sci Rev

January 2025

College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce.

View Article and Find Full Text PDF

Electrochemical In Situ Characterization Techniques in the Field of Energy Conversion.

Small Methods

January 2025

Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.

With the proposal of the "carbon peak and carbon neutrality" goals, the utilization of renewable energy sources such as solar energy, wind energy, and tidal energy has garnered increasing attention. Consequently, the development of corresponding energy conversion technologies has become a focal point. In this context, the demand for electrochemical in situ characterization techniques in the field of energy conversion is gradually increasing.

View Article and Find Full Text PDF

Novel GSIP: GAN-based sperm-inspired pixel imputation for robust energy image reconstruction.

Sci Rep

January 2025

Department of Computer Science, Faculty of Computers and Informatics, Kafrelsheikh University, Kafrelsheikh, Egypt.

Missing pixel imputation is a critical task in image processing, where the presence of high percentages of missing pixels can significantly degrade the performance of downstream tasks such as image segmentation and object detection. This paper introduces a novel approach for missing pixel imputation based on Generative Adversarial Networks (GANs). We propose a new GAN architecture incorporating an identity module and a sperm motility-inspired heuristic during filtration to optimize the selection of pixels used in reconstructing missing data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!