Inefficient V(D)J recombination underlies monogenic T cell receptor β expression.

Proc Natl Acad Sci U S A

Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Published: August 2020

AI Article Synopsis

Article Abstract

The assembly of T cell receptor (TCR) and immunoglobulin (Ig) genes by V(D)J recombination generates the antigen receptor (AgR) diversity that is vital for adaptive immunity. At most AgR loci, V(D)J recombination is regulated so that only one allele assembles a functional gene, ensuring that nearly every T and B cell expresses a single type, or specificity, of AgR. The genomic organizations of some AgR loci permit the assembly and expression of two distinct genes on each allele; however, this is prevented by undetermined mechanisms. We show that the poor qualities of recombination signal sequences (RSSs) flanking Vβ gene segments suppress the assembly and expression of two distinct TCRβ genes from a single allele. Our data demonstrate that an intrinsic genetic mechanism that stochastically limits Vβ recombination efficiency governs monogenic TCRβ expression, thereby restraining the expression of multiple AgRs on αβ T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414081PMC
http://dx.doi.org/10.1073/pnas.2010077117DOI Listing

Publication Analysis

Top Keywords

vdj recombination
12
cell receptor
8
agr loci
8
assembly expression
8
expression distinct
8
recombination
5
expression
5
inefficient vdj
4
recombination underlies
4
underlies monogenic
4

Similar Publications

Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus.

Front Immunol

January 2025

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States.

Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered.

View Article and Find Full Text PDF

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Background: Legless lizards, the slow worms of the genus are forming secondary contact zones within their Europe-wide distribution.

Methods: We examined 35 populations of and to identify the level of morphological and genetic divergence in Poland. We applied a conventional study approach using metric, meristic, and categorial (coloration) features for a phenotype analysis, and two standard molecular markers, a mitochondrial (NADH-ubiquinone oxidoreductase chain 2; ) and a nuclear (V(D)J recombination-activating protein 1; ) one.

View Article and Find Full Text PDF

The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.

View Article and Find Full Text PDF

Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and -mer counting in barcoded data, BKC, as a standalone tool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!