Background: Home gardens (HGs) are hotspots of in situ agrobiodiversity conservation. We conducted a case study in Tabasco, México, on HG owners' knowledge of HG ecological, economical and socio-cultural multifunctionality and how it relates to agrobiodiversity as measured by species richness and diversity. The term multifunctionality knowledge refers to owners' knowledge on how HGs contribute to ecological processes, family economy, as well as human relations and local culture. We hypothesized a positive correlation between owners' multifunctionality knowledge and their HGs' agrobiodiversity.
Methods: We inventoried all perennial species in 20 HGs, determined observed species richness, calculated Shannon diversity indexes and analysed species composition using non-metric multidimensional scaling (NMDS). Based on literature, semi-structured interviews and a dialogue of knowledge with HG owners, we catalogued the locally recognized functions in the ecological, economic and socio-cultural dimensions. We determined the score of knowledge on each function in the three dimensions on explicit scales based on the interviews and observed management. We determined Spearman rs correlations of HGs' observed species richness, Shannon diversity index (H) and of HGs' scores on NMDS-axis and multifunctionality knowledge scores. We dialogued on the results and implications for agrobiodiversity conservation at workshops of HG owners, researchers and local organizations.
Results: HG agrobiodiversity and owners' multifunctionality knowledge in the study area showed large variation. Average richness was 59.6 perennial species, varying from 21 to 107 species, and total observed richness was 280 species. A total of 38 functions was distinguished, with 14, 12 and 12 functions in the ecological, economic and socio-cultural dimensions. Total multifunctionality knowledge scores varied from 64.1 to 106.6, with an average of 87.2. Socio-cultural functionality knowledge scores were the highest, followed by scores in the ecological and economic dimensions. Species richness and Shannon H were significantly correlated with ecological functionality knowledge (rs = 0.68 and P < 0.001 in both cases), and species richness was also correlated with economic functionality knowledge (rs = 0.47, P = 0.03). Species composition scores on the first and second axes of NMDS was significantly correlated with knowledge of ecological multifunctionality, with rs = 0.49 resp-0.49 and P = 0.03 in both cases. Other functionality knowledge scores showed no correlation with NMDS scores. Dialogue in workshops confirmed the interwovenness of multifunctionality knowledge and agrobiodiversity.
Conclusion: The rich agrobiodiversity of home gardens cherished by rural families in Tabasco relates with the knowledge about HG functionality in the ecological and economic dimensions. Also, species composition relates with ecological functionality knowledge. The socio-cultural functionality knowledge, which includes many elements beyond the individual HG, is not correlated with agrobiodiversity, but had the highest scores. Our results show that multifunctionality knowledge provides many opportunities for the participative conception and planning of policies and actions necessary to conserve agrobiodiversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370461 | PMC |
http://dx.doi.org/10.1186/s13002-020-00392-2 | DOI Listing |
Sci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
Unraveling how agricultural management practices affect soil biota network complexity and stability and how these changes relate to soil processes and functions is critical for the development of sustainable agriculture. However, our understanding of these knowledge still remains unclear. Here, we explored the effects of soil management intensity on soil biota network complexity, stability, and soil multifunctionality, as well as the relationships among these factors.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Federal Rural University of Pernambuco, Department of Agronomy, Dom Manoel de Medeiros Street, w/n, Recife, PE, 52171-900, Brazil. Electronic address:
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.
View Article and Find Full Text PDFJ Morphol
December 2024
Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Schleswig-Holstein, Germany.
Insect legs, as primarily locomotory devices, can show a tremendous variety of morphological modifications providing a multitude of usages. The prehensile raptorial forelegs of praying mantises (Mantodea) are a prominent example of true multifunctionality since they are used for walking while being efficient prey-capturing and grasping devices. Although being mostly generalist arthropod predators, various morphological adaptations due to different environmental conditions occur across Mantodea.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China.
Two-dimensional (2D) semiconductor components have excellent physical attributes, such as excellent mechanical ductility, high mobility, low dielectric constant, and tunable bandgap, which have attracted much attention to the fields of flexible devices, optoelectronic conversion, and microelectronic devices. Additionally, one-dimensional (1D) semiconductor materials with unique physical attributes, such as high surface area and mechanical potency, show great potential in many applications. However, isolated 1D and 2D materials often do not meet the demand for multifunctionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!