Twenty years ago, it was found that adding small amounts of amphiphilic block copolymers like poly(ethylene propylene)--poly(ethylene oxide) (PEP--PEO) to microemulsion systems strongly increases the efficiency of medium-chain surfactants to solubilize water and oil. Although being predestined to serve as a milestone in microemulsion research, the effect has only scarcely found its way into applications. In this work, we propose new types of efficiency boosters, namely, poly(ethylene oxide)-poly(alkyl glycidyl ether carbonate)s (PEO--PAlkGE) and their "carbonated" poly(ethylene oxide)-poly(carbonate alkyl glycidyl ether) analogs. Their synthesis via anionic ring-opening polymerization (AROP) from commercially available long-chain alkyl glycidyl ethers (AlkGE) and monomethoxypoly(ethylene glycol)s as macroinitiators can be performed at low cost and on a large scale. We demonstrate that these new PEO--PAlkGE copolymers with dodecyl and hexadecyl side chains in the nonpolar block strongly increase the efficiency of both pure and technical-grade -alkyl polyglycol ether surfactants to form microemulsions containing pure -alkanes or even technical-grade waxes, a result that could be of interest for industrial applications where reduced surfactant needs would have significant economic and ecological implications. For -decane microemulsions, the boosting effect of PEO--PAlkGE and PEP--PEO polymers can be scaled on top of each other, when plotting the efficiency semilogarithmically versus the polymeric coverage of the amphiphilic film. Interestingly, a somewhat different scaling behavior was observed for -octacosane microemulsions at elevated temperatures, suggesting that the polymers show less self-avoidance and rather behave as almost ideal chains. A similar trend was found for the increase of the bending rigidity κ upon polymeric coverage of the amphiphilic film, which was obtained from the analysis of small-angle neutron scattering (SANS) measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c01491 | DOI Listing |
Pulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFMetab Eng Commun
June 2025
Department of Chemical Engineering, University of Waterloo, Canada.
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes.
View Article and Find Full Text PDFJ Adv Pract Oncol
November 2024
From Memorial Sloan Kettering Cancer Center, New York, New York.
Purpose: Opioid-induced constipation (OIC) is highly prevalent in patients with cancer-related pain on opioid analgesics and has negative consequences on physical and psychological well-being and quality of life. Oncology clinical practice guidelines recommend the use of osmotic and stimulant laxatives for the prevention and management of opioid-induced constipation, not stool softeners such as docusate sodium. Prescribing practices continue to fall behind these recommendations.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.
Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia.
Introduction: Rhein, a natural bioactive lipophilic compound with numerous pharmacological activities, faces limitations in clinical application due to poor aqueous solubility and low bioavailability. Thus, this study aimed to develop a rhein-loaded self-nano emulsifying drug delivery system (RL-SNEDDS) to improve solubility and bioavailability.
Methods: The RL-SNEDDS was prepared by aqueous titration method with eucalyptus oil (oil phase), tween 80 (surfactant), and PEG 400 (co-surfactant) and optimization was performed by 3 factorial design.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!