Cold acclimation by sustained downregulation of PSII was studied in intact leaves of an Australian mistletoe Amyema miquelii (Lehm. ex Miq.) Tiegh. and its host Eucalyptus. The trends were followed from autumn to spring on leaves that had developed in summer and were exposed to different microclimates with progress of the seasons. In sun leaves of mistletoe, efficiency of excitation energy transfer from light-harvesting pigments to Chl a molecules in PSII core complexes was markedly reduced in winter. Concomitantly, a band in 77K fluorescence emission spectra emerged at 715 nm, in the same way as the cold-hard band found in overwintering snow gum seedlings (Gilmore and Ball 2000, Proceedings of the National Academy of Sciences USA , 11 098-11 101). Further, a distinct band, which presumably involves Chl-b-containing antennae complexes, appeared at 705 nm in -2°C fluorescence emission spectra with decreasing intensity of the PSII band. Much shorter PSII fluorescence lifetimes measured in sun leaves of mistletoe that were exhibiting sustained downregulation of PSII indicated enhanced thermal dissipation of excitation energy. Winter acclimation symptoms of the photosynthetic apparatus were more striking in mistletoe sun leaves compared with eucalypt sun leaves. Because the light and temperature environments of sun leaves are similar for the parasite and host, we primarily attribute the enhanced light-acclimation symptoms to the limited photosynthetic capacity of A. miquelii in winter.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP02014DOI Listing

Publication Analysis

Top Keywords

sun leaves
20
sustained downregulation
12
downregulation psii
8
leaves mistletoe
8
excitation energy
8
fluorescence emission
8
emission spectra
8
leaves
7
psii
5
sun
5

Similar Publications

Causal associations between immune cells and psychiatric disorders: a bidirectional mendelian randomization analysis.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Graduate School of PLA Medical College, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing, 100083, China.

Extensive researches illuminate a potential interplay between immune traits and psychiatric disorders. However, whether there is the causal relationship between the two remains an unresolved question. We conducted a two-sample bidirectional mendelian randomization by utilizing summary data of 731 immune cell traits from genome-wide association studies (GCST90001391-GCST90002121)) and 11 psychiatric disorders including attention deficit/hyperactivity disorder (ADHD), anxiety disorder, autism spectrum disorder (ASD), bipolar disorder (BIP), anorexia nervosa (AN), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), Tourette syndrome (TS), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), and substance use disorders (cannabis) (SUD) from the Psychiatric Genomics Consortium (PGC).

View Article and Find Full Text PDF

Transcriptome analysis of nitrate enhanced tobacco resistance to aphid infestation.

Plant Physiol Biochem

January 2025

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China. Electronic address:

Tobacco is an economic crop that primarily relies on nitrate (NO) as its nitrogen source, and tobacco aphid is one of the significant pests that harm its growth. However, the impact of NO supply on the resistance of tobacco to aphids remains unclear. Present study investigated the effects of different NO concentrations supply on the reproductive capacity of tobacco aphids, impact of aphid infestation on tobacco growth, secondary metabolic and transcription changes.

View Article and Find Full Text PDF

This study was focused on the development of ZnO nanostructures for the efficient oxidation of erythrosine dye and for studying the antibacterial activity of ZnO. It was observed that the phytochemicals from leaves modified the size, shape, crystalline properties and surface chemical composition of the ZnO nanostructures. ZnO nanostructures synthesized with 15 mL leaves extract (S-15) demonstrated highly efficient oxidation of erythrosine dye under the illumination of natural sunlight.

View Article and Find Full Text PDF

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

In order to identify the pathogen responsible for Hedera nepalensis leaf blight and investigate effective biocontrol strategies, samples were collected from 10 significantly infected areas at Southwest Forestry University; four to six infected leaves were gathered from each area, followed by the isolation and purification of strains from the infected plant leaves using tissue isolation and hyphae-purification techniques. We conducted an examination of the biological characteristics and compared the inhibitory effects of different concentrations of Phomopsis sp. (50%, 25%, 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!