Seasonal changes in hydraulic properties and tissue elasticity were evaluated in Erica arborea L., Myrtuscommunis L. and Juniperus communis L., three Mediterranean shrubs that differ in adaptations to drought. These parameters were analysed over 12 months under field conditions, by comparing plants grown in the proximity of a natural CO2 spring (about 700 μmol mol atmospheric CO2 concentration, [CO2]) with plants in ambient conditions. Plants at the CO2-spring site have been growing for generations at elevated [CO2]. At both sites, stem hydraulic and structural properties followed the prevailing climatic constraints. However, these shrub species co-occurring in the same environment differed in their capacity to tolerate water deficits, in xylem efficiency, and in strategies for regulating water movement between plant compartments. Either an increase or a decrease in tissue elasticity was effective in promoting resistance to drought stress, depending on the species. Long-term elevated [CO2] influenced all the studied parameters. Species-dependent differences existed in hydraulic architecture between the CO2-spring plants and control plants of E. arborea and M. communis, while J. communis plants rarely showed differences between sites. Less distinct differences between sites were observed for wood structure. The three species showed somewhat lower tissue elasticity under elevated [CO2], in particular during stress periods. The effects of elevated [CO2] on stem hydraulic pathway and structure and shoot elastic properties persist in the long term, but differ in absolute values and sign among the studied species and with the seasonal course, and thus might alter competitive relations between these shrubs.

Download full-text PDF

Source
http://dx.doi.org/10.1071/PP01220DOI Listing

Publication Analysis

Top Keywords

tissue elasticity
16
elevated [co2]
16
seasonal changes
8
mediterranean shrubs
8
stem hydraulic
8
differences sites
8
plants
6
[co2]
5
tissue
4
changes tissue
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!