Adaptation to prolonged flooding was investigated using cuttings of two tree species from the Central Amazon white-water floodplain (Várzea). Morphological features and oxygen distribution patterns were correlated with metabolic changes under hypoxia, such as alterations in alcohol dehydrogenase (ADH) activity and adenylate energy charge (AEC) of root cells. Salix martiana (Leyb.) was able to react to hypoxic growth conditions with formation of adventitious roots rich in lysigenous aerenchyma, which facilitates root aeration by longitudinal oxygen transport and rhizosphere oxidation by radial oxygen loss (ROL). The oxygen concentration on the surface of adventitious roots of S. martiana reached 2-3 mg O2 L. The low resistance to gas exchange in Salix roots was reflected by low ADH activities, which ranged between 0.03-0.1 μmol NADH mg min, and AEC values of 0.8-1 under hypoxic conditions. Adventitious roots were also formed by Tabernaemontana juruana ([Markgr.] Schumann ex. J.F. Macbride) during growth under low-oxygen conditions, although at a later stage. The gas-space continuum in roots of T. juruana was less pronounced, resulting in a 10-fold lower oxygen concentration in the root cortex under oxygen stress compared with adventitious roots of Salix. The lower oxygen content was reflected in 6-fold higher ADH activities and decreased AEC values. ROL occurred only at the non-suberized root tip, suggesting that the suberized hypodermis functions as a barrier against gas exchange between the root and the rhizosphere. These findings indicate that different strategies of adaptation to low oxygen levels are realized in the two species under investigation that occur naturally in the same ecosystem but inhabit different elevation sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/PP01239 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Leibniz University Hannover, Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Hannover, Germany.
Introduction: The presence of wounds in addition to the excision-induced wounds after severance from the stock plants is known to positively influence adventitious root formation of woody plant cuttings. Previous morphological studies highlighted laser wounding as a technique allowing to precisely control the decisive ablation depth. However, the biochemical processes involved in the response of rooting to the additional wounding remained unexplored.
View Article and Find Full Text PDFBur., a versatile plant with medicinal, edible, landscaping, and ecological applications, holds significant economic value and boasts a long-standing history of utilization in China. Despite its robust adaptability, rapid growth, and extensive distribution, the current research gap concerning the physiological mechanisms underlying stem cutting propagation hampers the development of efficient strategies for commercial-scale propagation of , particularly for large-scale cultivation.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China.
Background: Adventitious root (AR) formation is the key step for successful cutting propagation of tea plants (Camellia sinensis L.). Studies showed that arbuscular mycorrhizal fungus (AMF) can promote the rooting ability, and auxin pathway in basal stem of cuttings was involved in this process.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
The Key Laboratory of Biotechnology for Medicinal and Edible Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: WRKY transcription factors are plant-specific and play essential roles in growth, development, and stress responses, including reactions to salt, drought, and cold. Despite their significance, the WRKY genes in the wild sweet potato ancestor, Ipomoea pes-caprae, remain unexplored.
Results: In this study, 65 WRKY genes were identified in the I.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!