The nodulation failure resulting from the interaction between Rhizobium leguminosarum biovar trifolii strain ANU794 and the Trifolium subterraneum cv. Woogenellup was examined by transposon mutagenesis to resolve whether multiple determinants were involved in cultivar-specificity. Three new transposon-induced mutants of ANU794 (W72, W78 and W710) with significantly enhanced nodulation ability on cv. Woogenellup were identified. The W72 and W78 mutations are chromosomally-located, whereas the W710 mutation isplasmid-located. The ethylene synthesis inhibitor, aminoethoxyvinylglycine, fails to enhance the nodulation ability of ANU794, ANU7943 (csn1::Tn5) and W78 on cv. Woogenellup, but enhances the nodulation ability of W72,W710 and ANU7941 (nodM::Tn5). DNA sequencing of the W78 locus reveals strong homology to an unknown Mycobacterium open reading frame, and to several bacterial non-haem chloroperoxidases. The previously identified csn1 locus showed homology to the 50S ribosomal protein, L9, with the Tn5 insertion being located in the 5'-untranslated region. The results suggest that cultivar-specificity is mediated by at least two independent mechanisms or determinants, and not by a simple gene-for-gene interaction. The role of ethylene in cultivar specificity is discussed. Cultivar-specific interactions may prove useful in identifying pathways involved in efficient nodule formation and plant-microbe interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/PP00107_ER | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!