A method for genetic transformation of germinating seeds and seedlings of Eucalyptus grandis × E. urophyllais described using the sonication-assisted Agrobacterium-mediated transformation (SAAT) system. Seeds germinated for 2 d, and 15-d-old seedlings, sonicated for 30 s, had the highest percentage of β-glucuronidase (GUS) transient expression (21.7 and 37.4%, respectively). Pre-sonication greatly enhanced the efficiency of transformation. The differential transformation of tissues was also investigated, with seeds imbibed for 2 d having over 90% of the blue sectors localised in cotyledons and in the intersection of the hypocotyls and roots, whereas in 5-d-old seedlings, 70% of GUS activity was detected in cotyledons. However, 15-17-d-old seedlings had around 60% of transformed sectors localised in the first pair of leaves. The efficiency of the method was also assessed using a chimeric construct containing the Lhcb1*2 gene of the 28 kDa chlorophyll a/b binding pea protein from the LHCII antenna. Four stable transformants were confirmed by genomic blotting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/PP01142 | DOI Listing |
Neotrop Entomol
January 2025
Institute of Agricultural Sciences, Federal Rural University of the Amazon - UFRA, Belém, PA, Brazil.
Brazil has 10.2 million hectares of reforestation, which account for 81% of the timber produced in the country. The order Hemiptera contains the main phytophagous species.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
Background: Eucalyptus grandis, which was first comprehensively and systematically introduced to China in the 1980s, is one of the most important fast-growing tree species in the forestry industry. However, to date, no core collection has been selected from the germplasm resources of E. grandis based on growth and genetic relationship analysis.
View Article and Find Full Text PDFTree Physiol
December 2024
Plant Physiology Department, LMGV, Agricultural Science and Technology Center, State University of North Fluminense, Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
Protoplasma
December 2024
Plant Molecular Biology Lab, School of Biotechnology, University of Jammu, Jammu, (J&K), 180006, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!