Although photosynthetic response to long-term elevated CO has been extensively studied, little attention has yet been directed at coordinated adjustments between the use of absorbed light for CO fixation, and the dissipation of potentially harmful excess light. In this study, we have performed an initial analysis of photosynthetic light use and excess light dissipation in response to grazing-induced variation in the source / sink ratio in ryegrass (Lolium perenne L.) after 6 years' exposure to Free Air CO Enrichment (FACE). Before grazing, when the source / sink ratio was relatively large, significant down-regulation of photosynthetic capacity (A) was observed in the FACE leaves compared with control leaves at the same stage of maturity. The decrease in A partly offset the direct stimulation of elevated CO on light-saturated photosynthesis, and was accompanied by a reduction in photochemical electron flow that was accompanied by a large increase in susceptibility to photoinhibition. This was indicated by large increases in both non-photochemical quenching (NPQ) and the de-epoxidised state of xanthophyll cycle (DEPS), and also by changes in the photochemical reflectance index (PRI). However, no significant increase in the xanthophyll pool size in FACE leaves was observed, despite the apparent large increase in requirements for photodissipation in FACE leaves. After grazing, when the source / sink ratio was relatively small, the CO fixation rates in both the FACE and control leaves were, as expected, significantly higher compared with those before grazing, and there was no down-regulation of photosynthetic capacity in the leaves under FACE conditions. In addition, the extent of photodissipation in the FACE and control leaves was not significantly different. Overall, the profile of leaf physiological and biochemical responses supports the hypothesis that the effect of long-term elevated CO can be significantly influenced by short-term variation in the source / sink ratio. As the xanthophyll pool size does not change significantly, this poses the question of whether the increased photodissipative demand observed here under even moderately elevated CO concentrations may lead to increased plant susceptibility to photoinhibition, and thus to an increased risk of damage to plant function, under conditions of low sink demand. This question clearly deserves further study.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP06168DOI Listing

Publication Analysis

Top Keywords

source / sink ratio
16
face leaves
12
control leaves
12
ryegrass lolium
8
lolium perenne
8
free air
8
air enrichment
8
face
8
enrichment face
8
long-term elevated
8

Similar Publications

Use of the FHTHWA Index as a Novel Approach for Predicting the Incidence of Diabetes in a Japanese Population Without Diabetes: Data Analysis Study.

JMIR Med Inform

January 2025

Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Background: Many tools have been developed to predict the risk of diabetes in a population without diabetes; however, these tools have shortcomings that include the omission of race, inclusion of variables that are not readily available to patients, and low sensitivity or specificity.

Objective: We aimed to develop and validate an easy, systematic index for predicting diabetes risk in the Asian population.

Methods: We collected the data from the NAGALA (NAfld [nonalcoholic fatty liver disease] in the Gifu Area, Longitudinal Analysis) database.

View Article and Find Full Text PDF

Objective: Cyclin-dependent kinase (CDK)-4/6 inhibitors have significantly improved outcomes in several cancers but can also induce various organ system toxicities, including musculoskeletal disorders. This study aimed to comprehensively characterize the musculoskeletal adverse events (MSAEs) associated with CDK4/6 inhibitors based on real-world data.

Methods: Reports of MSAEs linked to CDK4/6 inhibitors from the first quarter (Q1) of 2015 and 2023 Q4 were extracted from the FAERS.

View Article and Find Full Text PDF

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

Background: The significance of the controlling nutritional status (CONUT) score in predicting the prognostic outcomes of diffuse large B-cell lymphoma (DLBCL) has been widely explored, with conflicting results. Therefore, the present meta-analysis aimed to identify the prognostic significance of the CONUT in DLBCL by aggregating current evidence.

Methods: The Web of Science, PubMed, Embase, CNKI and Cochrane Library databases were searched for articles from inception to October 15, 2024.

View Article and Find Full Text PDF

Background: Fungal pretreatment for partial separation of lignocellulosic components may reduce lignocellulose recalcitrance during the production of biofuels and biochemicals. Quantitative and qualitative modification of plant lignin through genetic engineering or traditional breeding may also reduce the recalcitrance. This study was conducted to examine the effects of combining these two approaches using three white rot fungi and mulberry wood with an altered lignin structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!