A short heat pre-treatment (1 h at 38°C) was found to protect both suspension-cultured apple fruit cells and tobacco cells from cold-induced cell death. Tobacco cells were more sensitive to low temperatures than apple cells, with significant cell death after 48 h at 0 or -2°C. Real-time measurements of HO levels during the heat pre-treatment revealed a substantial burst of this reactive oxygen species in both cell types. Real-time and longer-term measurements also showed a large burst of HO production from tobacco cells, but not apple cells, when exposed to low temperatures. Lower temperatures reduced levels of peroxidase activity (both total and intracellular), with the heat pre-treatment preventing some of the cold-induced reduction of this activity in both apple and tobacco cells. The greater sensitivity to low temperature of the tobacco cells may be related to higher HO production, with the heat treatment maintaining higher peroxidase activity. The lesser sensitivity of the apple cells may be due to the lack of a HO burst and maintenance of peroxidase activity by the heat treatment. These results support a role for oxidative metabolism in the beneficial effects of heat in inducing low temperature tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP05077 | DOI Listing |
J Plant Physiol
January 2025
Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea. Electronic address:
Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Vavilov Institute of General Genetics Russian Academy of Sciences, 119333 Moscow, Russia.
The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia.
Reactive oxygen species (ROS) are essential molecules involved in intercellular communication, signal transduction, and metabolic processes. Abiotic stresses cause the accumulation of excess ROS in plant cells. The issue of regulating the antioxidant protection of plants using natural and synthetic compounds with antioxidant activity still remains one of the most important and relevant areas of fundamental and applied research.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
In the flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 ( Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!