Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment.

Funct Plant Biol

MOE Key Laboratory of Environmental Change and Natural Disasters, College of Resources Science and Technology, Beijing Normal University, Beijing 100875, People's Republic of China.

Published: August 2005

Seasonal and diurnal stomatal conductance, leaf transpiration, and soil water contents of two shrubs of Hippophae rhamnoides L. subsp. Sinensis Rousi and Caragana korshinskii Kom., two trees of Malus pomila Mill. and Robinia pseudoacacia L., and a forb, Artemisia gmelinii, were measured in field of the semiarid Loess Plateau, north China, during the growing season of 2002. We developed a dynamic, nonlinear semi-mechanistic model to relate stomatal conductance of these plants to soil water potential, incident photon flux density, vapour pressure deficit, and partial CO pressure, on leaf surface. The model can be easily adapted to ecosystem simulation because of its mathematical simplicity. Guard-cell osmotic pressure at zero light intensity, apparent elastic modulus of guard cells per leaf area, half-saturation light intensity, maximum light-inducible osmotic pressure, soil-to-leaf resistance at zero plant water potential, sensitivity of soil-to-leaf resistance to xylem water potential, and plant body water capacitance, are independent parameters of the model. The model was fitted to the field data of the five species with a non-linear least-square algorithm to obtain the parameters. The result indicates that the model explained, on average, 88% of seasonal and diurnal variation of stomatal conductance for the five species, in comparison with 67% of variation explained by an early model without plant body water capacitance. Comparisons of the physiological parameters among the species show that the woody species exhibited more tolerance for water stresses than the forb because of their higher dark osmotic pressure, greater capability of seasonal and diurnal osmotic regulation, and stiffer guard cell structure (or smaller stomatal density or both). A decreasing trend of soil-to-leaf resistance from the trees to the shrubs to the forb was found in this study. Midday depression of transpiration and stomatal conductance may or may not occur, depending on the magnitude of body water capacitance.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP04092DOI Listing

Publication Analysis

Top Keywords

stomatal conductance
20
seasonal diurnal
16
water potential
12
osmotic pressure
12
soil-to-leaf resistance
12
body water
12
water capacitance
12
conductance plants
8
water
8
soil water
8

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Global changes and growing demands have led to the development of new molecular approaches to improve crop physiological performances. Carbonic anhydrase (CA) enzymes, ubiquitous across various life kingdoms, stand out for their critical roles in plant photosynthesis and water relations. We hypothesize that the modulators of human CAs could affect plant physiology.

View Article and Find Full Text PDF

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

Assessment of the Photosynthetic Response of Potato Plants Inoculated with and Treated with Flesh-Colored Potato Extracts Nanoencapsulated with Solid Lipid Nanoparticles.

Plants (Basel)

January 2025

Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco 4811230, Chile.

Potato has great nutritional and economic importance in agriculture. However, represents a significant risk, reducing the yield and quality of potato production. Flesh-colored potato (FCP) extracts show in vitro inhibitory effects against , although environmental factors may reduce their stability.

View Article and Find Full Text PDF

Comprehensive Identification of Gene Family in Oliv. and Functional Analysis of in Drought Tolerance.

Int J Mol Sci

January 2025

Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.

The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!