To further our understanding of the mechanisms of sugar uptake and accumulation into grapefruit (Citrus paradisi Macf. cv. Marsh seedless), the patterns of uptake and utilisation of sucrose, glucose and fructose by Citrus juice cells was investigated. Analyses were conducted on sliced juice sacs that were incubated in radioactive [C]-sugar solutions with unlabelled sugars, in the presence or absence of metabolic inhibitors. Both hexoses demonstrated an initial uptake peak in December and a second uptake peak in February-March. From March through April the rates of sucrose uptake increased to levels comparable to those of glucose and fructose. Sucrose and its moieties fructose and glucose entered the juice cells of Citrus juice fruit by an insaturable, and mostly by an independent, process. However, NaN and carbonylcyanide m-chlorophenylhydrazone (CCCP) produced slight inhibition of these processes. Cells took up hexoses at a greater rate than sucrose, with accumulation reaching a plateau by 4-8 h, and then continuing unabated, in the case of glucose, for 42 h. Uptake of all three sugars increased linearly in the range of sugar concentrations tested, which extended from 0.01 to 320 mm, denoting an insaturable system for sugar uptake. CO evolution was relatively low in all the experiments, the lowest evolution being recorded when the uptake of [C]-sucrose was studied, while the highest CO evolution was recorded when the uptake of [C]-glucose was studied. The data demonstrate a preferential utilisation of glucose over fructose and sucrose. In all the experiments, the two metabolic inhibitors significantly inhibited the decarboxylation of the three sugars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP04125 | DOI Listing |
Alzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Cerebral blood flow (CBF) and glucose utilization have both proven sensitive biomarkers of brain function in Alzheimer's disease. However, while blood flow supplies glucose to cells to meet local demand, and therefore, are inter-related, the two aspects are physiologically distinct. Our goal was to conduct a region-to-region correlation of magnetic resonance imaging (MRI) and F-fluorodeoxyglucose positron emission tomography (FDG-PET) biomarkers of cerebral blood flow and glucose utilization to determine whether these physiologically distinct biomarkers yield functionally distinct information.
View Article and Find Full Text PDFBackground: Alzheimer's disease and type 2 diabetes mellitus rank among the top ten leading global causes of death. The association between diabetes and Alzheimer's is linked to chronic low-grade inflammation, hyperinsulinemia, and the interplay between peripheral and central insulin resistance, influencing insulin signalling. We evaluated the association between diabetes and Alzheimer's-related neuropathology in cognitively unimpaired older adults with diabetes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Background: Vascular pathology associated with small vessel disease (SVD), such as microinfarcts and microbleeds, are common in elderly populations and significant contributors to cognitive impairment and dementia. Autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL), caused by mutations in the Notch3 gene, is the most prominent inheritable SVD, with a common etiology of subcortical strokes and dementia. This study aimed to investigate additive or synergistic effects of CADASIL-related vascular alterations and familial Alzheimer's disease (FAD)-related amyloid pathology on cerebral metabolism of glucose and disease progression in a novel FAD-CADASIL mouse model.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
Background: COVID-19, identified as the greatest health concern of the century, is associated with vascular inflammation and endothelial activation, resulting in multisystemic damage, including to the central nervous system (CNS). Recent investigations indicate a link between endothelial dysfunction, neurological changes, and the development of the so-called long-COVID. Molecules expressed in the endothelium such as P-selectin, E-selectin, and VEGF-A, increased under inflammatory injury, may be associated with conditions like brain injuries and neurodegenerative diseases.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.
Background: Type 2 diabetes and glucose metabolism have previously been linked to cognitive decline and higher risk of developing Alzheimer's disease (AD) dementia. Yet, the relation of glucose metabolism with amyloid and tau pathology remains unclear. This knowledge will help understanding the importance of glucose regulation in relation to AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!