AI Article Synopsis

  • The study introduces a new model for simulating the growth of Arabidopsis thaliana, focusing on its whole-plant development, including organ formation and carbon distribution.
  • The model, adapted from the GreenLab model, analyzes competition for resources among different plant parts as they grow, using data to estimate organ strength and biomass production.
  • Key findings indicate that competition among plant organs varies throughout development stages, with significant competition emerging during the reproductive phase, especially when lateral flowers develop.

Article Abstract

Arabidopsis thaliana (L.) Heynh. is used as a model plant in many research projects. However, few models simulate its growth at the whole-plant scale. The present study describes the first model of Arabidopsis growth integrating organogenesis, morphogenesis and carbon-partitioning processes for aerial and subterranean parts of the plant throughout its development. The objective was to analyse competition among sinks as they emerge from patterns of plant structural development. The model was adapted from the GreenLab model and was used to estimate organ sink strengths by optimisation against biomass measurements. Dry biomass production was calculated by a radiation use efficiency-based approach. Organogenesis processes were parameterised based on experimental data. The potential of this model for growth analysis was assessed using the Columbia ecotype, which was grown in standard environmental conditions. Three phases were observed in the overall time course of trophic competition within the plant. In the vegetative phase, no competition was observed. In the reproductive phase, competition increased with a strong increase when lateral inflorescences developed. Roots and internodes and structures bearing siliques were strong sinks and had a similar impact on competition. The application of the GreenLab model to the growth analysis of A. thaliana provides new insights into source-sink relationships as functions of phenology and morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP08099DOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
greenlab model
8
model growth
8
growth analysis
8
phase competition
8
model
6
competition
5
model-based analysis
4
analysis dynamics
4
dynamics carbon
4

Similar Publications

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases.

J Integr Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.

View Article and Find Full Text PDF

ZmDREB1A controls plant immunity via regulating salicylic acid metabolism in maize.

Plant J

January 2025

National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.

DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R.

View Article and Find Full Text PDF

Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.

View Article and Find Full Text PDF

To enhance plant biomass production under low nitrogen conditions, we employed a method to artificially and temporarily accumulate the bacterial second messenger, guanosine tetraphosphate (ppGpp), to modify plastidial or mitochondrial metabolism. Specifically, we fused a chloroplast or mitochondrial transit-peptide to the N-terminus of the bacterial ppGpp synthase YjbM, which was conditionally expressed by an estrogen-inducible promoter in . The resulting recombinant plants exhibited estrogen-dependent ppGpp accumulation in chloroplasts or mitochondria and showed reduced fresh weight compared to wild type (WT) plants when grown on agar-solidified plates containing a certain amount of estrogen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!