Salinity tolerance is a complex trait inferring the orchestrated regulation of a large number of physiological and biochemical processes at various levels of plant structural organisation. It remains to be answered which mechanisms and processes are crucial for salt tolerance in lucerne (Medicago sativa L.). In this study, salinity effects on plant growth characteristics, pigment and nutrient composition, PSII photochemistry, leaf sap osmolality, changes in anatomical and electrophysiological characteristics of leaf mesophyll, and net ion fluxes in roots of several lucerne genotypes were analysed. Salinity levels ranged from 40 to ~200 mm NaCl, and were applied to either 2-month-old plants or to germinating seedlings for a period of between 4 and 12 weeks in a series of hydroponic, pot and field experiments. Overall, the results suggest that different lucerne genotypes employ at least two different mechanisms for salt tolerance. Sodium exclusion appeared to be the mechanism employed by at least one of the tolerant genotypes (Ameristand 801S). This cultivar had the lowest leaf thickness, as well as the lowest concentration of Na in the leaf tissue. The other tolerant genotype, L33, had much thicker leaves and almost twice the leaf Na concentration of Ameristand. Both cultivars showed much less depolarisation of leaf membrane potential than the sensitive cultivars and, thus, had better K retention ability in both root and leaf tissues. The implications of the above measurements for screening lucerne germplasm for salt tolerance are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP08030 | DOI Listing |
Hortic Res
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, No.1 Weigang Road, Xuanwu District, Nanjing 210095, China.
Root development is a complex process involving phytohormones and transcription factors. Our previous research has demonstrated that is significantly expressed in Bok choy roots under salt stress, and heterologous expression of increases salt tolerance and promotes root development in transgenic . However, the precise molecular mechanisms by which BcWRKY33A governs root development remain elusive.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan, 32439, Republic of Korea.
Background: Soil salinity has been a serious threat to agricultural production worldwide, including soybeans. Glycine soja, the wild ancestor of cultivated soybeans, harbors high genetic diversity and possesses attractive rare alleles.
Objective: We conducted a transcriptome analysis of G.
J Microbiol Biotechnol
December 2024
Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
We compared the salt tolerance and proteolytic activity of 120 strains of each of , , and . Most strains exhibited growth in 12% (w/v) NaCl and showed proteolytic activity in 10% or 11% NaCl. The majority of strains grew in 14% NaCl and showed proteolytic activity in 12% or 13% NaCl.
View Article and Find Full Text PDFJ Org Chem
January 2025
U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States.
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations.
View Article and Find Full Text PDFFront Plant Sci
January 2025
CSIRO, Glen Osmond, Adelaide, SA, Australia.
Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!