Self-organisation at the whole-plant level: a modelling study.

Funct Plant Biol

Centre for Plant and Water Science, School of Biological and Environmental Sciences, Central Queensland University, Rockhampton, Qld 4702, Australia.

Published: January 2009

Within-plant light and nutrient environments are spatially and temporally heterogeneous. The development of different parts of a plant is highly coordinated, which enables the efficient capture and use of resources in such heterogeneous environments. The physiological mechanisms underlying the correlative control of distantly located plant tissues and organs are still not fully understood. In this study, a mathematical model based on a self-organisation mechanism for resource allocation mediated by polar auxin transport is proposed to explain the origin of correlative effects among shoot branches. In the model, the shoot system of an individual plant is treated as a collection of relatively independent modular subunits competing for root-derived resources. The allocation of root-derived resources to different parts of the shoot is determined by their relative vascular contacts with the root system. The development of the vascular network is specified by the polar transport of auxin produced by various parts of the shoot in response to their immediate internal and external environments. The simulation results show that, by altering the amount of auxin they release individually in response to the local environment and modifying their relative vascular contact with the root system, subunits of a shoot are able to coordinate without a central controller and self-organise into functional and structural patterns such as light foraging and correlative dominance. This modelling study suggests that morphological dynamics at the whole-plant level can be understood as the sum of all modular responses to their local environments. The concept of self-organisation holds great promise for an in-depth understanding of the organisational laws that generate overall plant structure and functions.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP08046DOI Listing

Publication Analysis

Top Keywords

whole-plant level
8
modelling study
8
root-derived resources
8
parts shoot
8
relative vascular
8
root system
8
shoot
5
self-organisation whole-plant
4
level modelling
4
study within-plant
4

Similar Publications

Wheat is an important cereal crop globally and in the United States, and is the largest crop grown by acreage in Colorado. In June 2023, we observed wheat fields displaying severe yellowing and virus-like disease symptoms in plants across seven eastern Colorado counties (Yuma, Prowers, Kit Carson, Washington, Sedgewick, Morgan, and Weld). Symptomatic plants were prominent in fields and appeared bright yellow, with ringspots, mosaic patterning, and streaking on leaves.

View Article and Find Full Text PDF

Two new phytoecdysteroids isolated from .

Nat Prod Res

January 2025

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, P.R. China.

Two new phytoecdysteroids, (24)-20,26-dihydroxy-24(28)-dehydro-28-methyl-ecdysone (), (24)-22,25-epoxy-2,3,14,20-tetrahydroxyergosta-7,24(28)-dien-28-methyl-6-one (), together with eleven known compounds (-) were isolated from the whole plant of L. The chemical structures of the compounds were elucidated by 1D and 2D NMR and HR-ESI-MS and compared with data from the literature. The isolated compounds were evaluated for their inhibitory effects on NO, TNF-α and IL-6 production in LPS-induced RAW 264.

View Article and Find Full Text PDF

Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules.

View Article and Find Full Text PDF

Background And Aims: Since salinity stress may occur across stages of rice (Oryza sativa L.) crop growth, understanding the effects of salinity at reproductive stage is important although it has been much less studied than at seedling stage.

Methods: In this study, lines from the Rice Diversity Panel 1 (RDP1) and the 3000 Rice Genomes (3KRG) were used to screen morphological and physiological traits, map loci controlling salinity tolerance through genome-wide association studies (GWAS), and identify favorable haplotypes associated with reproductive stage salinity tolerance.

View Article and Find Full Text PDF

Genome assembly and multi-omics analyses of Isodon lophanthodies provide insights into the distribution of medicinal metabolites induced by exogenous methyl jasmonate.

BMC Plant Biol

December 2024

Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.

Background: Isodon lophanthodies is a perennial herb and the whole plant has medicinal value distributed in southern China and southeast Asia. The absence of a reference genome has hindered evolution and genomic breeding research of this species.

Results: In this study, we present a high-quality, chromosome-level genome assembly of I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!