Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Network data sets are often constructed by some kind of thresholding procedure. The resulting networks frequently possess properties such as heavy-tailed degree distributions, clustering, large connected components, and short average shortest path lengths. These properties are considered typical of complex networks and appear in many contexts, prompting consideration of their universality. Here we introduce a simple model for correlated relational data and study the network ensemble obtained by thresholding it. We find that some, but not all, of the properties associated with complex networks can be seen after thresholding the correlated data, even though the underlying data are not "complex." In particular, we observe heavy-tailed degree distributions, a large numbers of triangles, and short path lengths, while we do not observe nonvanishing clustering or community structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.062302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!