There is a tacit assumption that multiband superconductors are essentially the same as multigap superconductors. More precisely, it is usually assumed that the number of excitation gaps in the single-particle energy spectrum of a uniform superconductor (i.e. number of peaks in the density of states of the superconducting electrons) determines the number of contributing bands in the corresponding superconducting model. Here we demonstrate that contrary to this widely accepted viewpoint, the superconducting magnetic properties are sensitive to the number of contributing bands even when the spectral gaps are degenerate and cannot be distinguished. In particular, we find that the crossover between superconductivity types I and II-the intertype regime-is strongly affected by the difference between characteristic lengths of multiple contributing condensates. The reason for this is that condensates with diverse characteristic lengths, when coexisting in one system, interfere constructively or destructively, which results in multi-condensate magnetic phenomena regardless of the presence/absence of the multigap spectrum of a superconducting multiband material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aba776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!