Thermoelectric generators (TEGs) offer cost-effective and sustainable solid-state energy conversion mechanism from wasted heat into useful electrical power. Thermoelectric (TE) materials based upon bismuth telluride (BiTe) systems are widely utilized in applications ranging from energy generation to sensing to cooling. There is demand for BiTe materials with high figure of merit (zT) and TEG modules with high conversion efficiency over intermediate temperatures (25°C-250°C). Here we provide fundamental breakthrough in design of BiTe-based TE materials and utilize them to demonstrate modules with outstanding conversion efficiency of 8%, which is 40% higher compared with state-of-the-art commercial modules. The average zT of 1.08 for p-type and 0.84 for n-type bismuth telluride alloys is obtained between 25 and 250°C. The significant enhancement in zT is achieved through compositional and defect engineering in both p- and n-type materials. The high conversion efficiency accelerates the transition of TEGs for waste heat recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369584 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101340 | DOI Listing |
Small
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan.
Reactive oxygen species (ROS) are highly reactive, making them useful for environmental and health applications. Traditionally, photocatalysts and piezocatalysts have been used to generate ROS, but their utilization is limited by various environmental and physical constraints. This study introduces metal-organic frameworks (MOFs) as modern thermocatalysts efficiently producing hydrogen peroxide (HO) from small temperature differences.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Thermal energy harvesting for high-speed moving objects is particularly promising in providing an efficient and sustainable energy source to enhance operational capabilities and endurance. Thermoelectric (TE) technology, by exploiting temperature gradients between a heat source and ambient temperature, can provide a continuous power supply to such systems, reducing the reliance on conventional batteries and extending operation times. However, the integrated thermoelectric generator (TEG) system design research is far behind materials development.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.
In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.
Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!