Cortico-basal ganglia circuits underlying dysfunctional control of motor behaviors in neuropsychiatric disorders.

Curr Opin Genet Dev

Departments of Neuroscience and Neurology, Zuckerman Mind Brain Institute, Columbia University 3227 Broadway, New York, NY, 10027, United States. Electronic address:

Published: December 2020

Neuropsychiatric disorders often manifest with abnormal control of motor behavior. Common symptoms include restricted and repetitive patterns of behavior (RRBs). Cortico-basal ganglia circuits have been implicated in the etiology of RBBs. However, there is a vast range of behaviors encompassed in RRBs, from simple explosive motor tics to rather complex ritualized compulsions. In this review, we highlight how recent findings about the function of specific basal ganglia circuits can begin to shed light into defined motor symptoms associated with neuropsychiatric disorders. We discuss recent studies using genetic animal models that advocate that different aspects of motor repetition in neurodevelopmental disorders, like obsessive-compulsive disorder and autism spectrum disorder, emerge from particular dysregulations in distinct cortico-basal ganglia circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7749078PMC
http://dx.doi.org/10.1016/j.gde.2020.05.042DOI Listing

Publication Analysis

Top Keywords

ganglia circuits
16
cortico-basal ganglia
12
neuropsychiatric disorders
12
control motor
8
motor
5
circuits
4
circuits underlying
4
underlying dysfunctional
4
dysfunctional control
4
motor behaviors
4

Similar Publications

Neuronal Tracing and Visualization of Nerve Injury by a Membrane-Anchoring Aggregation-Induced Emission Probe.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.

Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

The output of the basal ganglia to the corticothalamic system plays an important role in regulating absence seizures. Inspired by experiments, we systematically study the crucial roles of two newly identified direct inhibitory striatal-cortical projections that project from the striatal D1 nucleus (SD1) and striatal D2 nucleus (SD2) to the cerebral cortex, in controlling absence seizures. Through computational simulation, we observe that typical 2-4 Hz spike and wave discharges (SWDs) can be induced through the pathological mechanism of cortical circuits, and both enhancing the inhibitory coupling weight on the striatal-cortical projections and improving the discharge activation level of striatal populations can effectively control typical SWDs.

View Article and Find Full Text PDF

Gait initiation is a fundamental human task, requiring one or more anticipatory postural adjustments (APA) prior to stepping. Deviations in amplitude and timing of APAs exist in Parkinson's disease (PD), causing dysfunctional postural control which increases the risk of falls. The motor cortex and basal ganglia have been implicated in the regulation of postural control, however, their dynamics during gait initiation, relationship to APA metrics, and response to pharmacotherapy such as levodopa are unknown.

View Article and Find Full Text PDF

Causal contributions of cell-type-specific circuits in the posterior dorsal striatum to auditory decision-making.

Cell Rep

December 2024

Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China. Electronic address:

In the dorsal striatum (DS), the direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) play crucial opposing roles in controlling actions. However, it remains unclear whether and how dSPNs and iSPNs provide distinct and specific contributions to decision-making, a process transforming sensory inputs to actions. Here, we perform causal interrogations on the roles of dSPNs and iSPNs in the posterior DS (pDS) in auditory-guided decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!