Calcium treatment effects on malate metabolism and the GABA pathway in 'Cripps Pink' apple fruit during storage were investigated. Postharvest apple fruit treated with 1% and 4% calcium chloride solutions were stored at 25 ± 1 °C. The 4% calcium treatment suppressed declines in titratable acidity and malate content and increased succinate and oxalate concentrations. Calcium treatment also reduced the respiration rate and decreased ethylene production peak during storage. Moreover, 4% calcium treatment significantly enhanced cyNAD-MDH and PEPC activities and upregulated MdMDH1, MdMDH2, MdPEPC1 and MdPEPC2 expression while inhibiting cyNADP-ME and PEPCK activities and downregulating MdME1, MdME4 and MdPEPCK2 expression. Surprisingly, calcium treatment changed the content of some free amino acids (GABA, proline, alanine, aspartic acid and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway. Furthermore, calcium application enhanced GABA pathway activity by increasing MdGAD1, MdGAD2, MdGABA-T1/2 and MdSSADH transcript levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.127479 | DOI Listing |
J Med Internet Res
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China.
Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative traumatic coagulopathy (PPTIC) in patients with trauma.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Human-induced pluripotent stem cell (hiPSC) technology has been applied in pathogenesis studies, drug screening, tissue engineering, and stem cell therapy, and patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs) have shown promise in disease modeling, including diabetic cardiomyopathy. High glucose (HG) treatment induces lipotoxicity in hiPSC-CMs, as evidenced by changes in cell size, beating rate, calcium handling, and lipid accumulation. Empagliflozin, an SGLT2 inhibitor, effectively mitigates the hypertrophic changes, abnormal calcium handling, and contractility impairment induced by HG.
View Article and Find Full Text PDFBiomark Med
January 2025
Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China.
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
The RYR3 gene encodes a brain-type ryanodine receptor that functions to release calcium from intracellular storage and plays an essential role in calcium signaling. The associations between RYR3 variants and brain disorders remain unknown. We performed whole-exome sequencing in patients with idiopathic (non-lesional) partial epilepsy of unknown etiology.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye.
Objectives: Neonatal severe hyperparathyroidism (NSHPT) is a rare condition characterized by inactivating mutations in the calcium-sensing receptor () gene, leading to significant hypercalcemia and related complications.
Case Presentation: We present a case of a six-day-old male infant with weakness, jaundice, and hypotonia, later diagnosed with NSHPT due to a known homozygous mutation (c.242T>A; p.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!