Terahertz fingerprint characterization of 2,4-dichlorophenoxyacetic acid and its enhanced detection in food matrices combined with spectral baseline correction.

Food Chem

College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China; State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China. Electronic address:

Published: January 2021

Rapid and accurate detection of pesticide residues in food matrices are of great significance to food safety. This study aimed to characterize the fingerprint peaks of 2,4-dichlorophenoxyacetic acid (2,4-D) and to enhance its detection accuracy in food matrices by using terahertz (THz) time-domain spectroscopy. Density functional theory was used to simulate molecular dynamics of 2,4-D peaks (1.35, 1.60, 2.37 and 3.00 THz). Four baseline correction methods, including asymmetric least squares smoothing (AsLS), adaptive iteratively reweighted penalized least squares (AirPLS), background correction (Backcor), baseline estimation and denoising with sparsity (BEADS) were compared and used to eliminate spectral baselines of Zizania latifolia (ZIZLA), rice and maize containing 2,4-D residues, from 0.1 to 4 THz. Based on the peak information of 1.35 THz, the detection limit and accuracy of 2,4-D residues in these food matrices were significantly improved after THz spectral baseline correction, providing a new feasibility for food safety and agricultural applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.127474DOI Listing

Publication Analysis

Top Keywords

food matrices
16
baseline correction
12
24-dichlorophenoxyacetic acid
8
spectral baseline
8
residues food
8
food safety
8
24-d residues
8
food
6
thz
5
terahertz fingerprint
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!