Prior studies suggest that individual differences in stress responses contribute to the pathogenesis of neuropsychiatric disorders. In the present study, we investigated the role of small ubiquitin-like modifier (SUMO) E3 ligase protein inhibitor of activated STAT1 (PIAS1) in mediating stress responses to chronic social defeat stress (CSDS). We found that mRNA and protein levels of PIAS 1 were decreased in the hippocampus of high-susceptibility (HS) mice but not in low-susceptibility (LS) mice after CSDS. Local overexpression of PIAS1 in the hippocampus followed by CSDS exposure promoted stress resilience by attenuating social avoidance and improving anxiety-like behaviors. Viral-mediated gene transfer to generate a conditional knockdown of PIAS1 in the hippocampus promoted social avoidance and stress vulnerability after subthreshold microdefeat. HS mice displayed decreased levels of glucocorticoid receptor (GR) expression, and GR SUMOylation in the hippocampus was associated with stress vulnerability. Furthermore, cytokine/chemokine levels were changed predominantly in the hippocampus of HS mice. These results suggest that hippocampal PIAS1 plays a role in the regulation of stress susceptibility by post-translational modification of GRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.psyneuen.2020.104800 | DOI Listing |
Mol Biol Rep
January 2025
Federal Research Centre «Fundamentals of Biotechnology», Russian Academy of Sciences, Moscow, Russia, 119071.
Background: TRIM28 plays a crucial role in maintaining genomic stability and establishing imprinting, facilitated by the diversity of KRAB zinc finger proteins. The SUMOylation of TRIM28 is essential for its function and is enhanced in the presence of the KRAB domain. Previously, we demonstrated that Kaiso, another factor capable of interacting with TRIM28, can promote its SUMOylation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
IKKε is a traditional antiviral kinase known for positively regulating the production of type I interferon (IFN) and the expression of IFN-stimulated genes (ISGs) during various virus infections. However, through an inhibitor screen targeting cellular kinases, we found that IKKε plays a crucial role in the lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV). Mechanistically, during KSHV lytic replication, IKKε undergoes significant SUMOylation at both Lys321 and Lys549 by the viral SUMO E3 ligase ORF45.
View Article and Find Full Text PDFBiol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!