A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reactive particle-tracking solutions to a benchmark problem on heavy metal cycling in lake sediments. | LitMetric

Reactive particle-tracking solutions to a benchmark problem on heavy metal cycling in lake sediments.

J Contam Hydrol

Hydrologic Science and Engineering Program, Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA. Electronic address:

Published: October 2020

Geochemical systems are known to exhibit highly variable spatiotemporal behavior. This may be observed both in non-smooth concentration curves in space for a single sampling time and also in variability between samples taken from the same location at different times. However, most models that are designed to simulate these systems provide only single-solution smooth curves and fail to capture the noise and variability seen in the data. We apply a recently developed reactive particle-tracking method to a system that displays highly complex geochemical behavior. When the method is made to most closely resemble a corresponding Eulerian method, in its unperturbed form, we see near-exact match between solutions of the two models. More importantly, we consider two approaches for perturbing the model and find that the spatially-perturbed condition is able to capture a greater degree of the variability present in the data. This method of perturbation is a task to which particle methods are uniquely suited and Eulerian models are not well-suited. Additionally, because of the nature of the algorithm, noisy spatial gradients can be highly resolved by a large number of mobile particles, and this incurs negligible computational cost, as compared to expensive chemistry calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2020.103642DOI Listing

Publication Analysis

Top Keywords

reactive particle-tracking
8
variability data
8
particle-tracking solutions
4
solutions benchmark
4
benchmark problem
4
problem heavy
4
heavy metal
4
metal cycling
4
cycling lake
4
lake sediments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!