Lyotropic liquid crystalline nanoparticles with bicontinuous cubic internal nanostructure, known as cubosomes, have been proposed as nanocarriers in various medical applications. However, as these nanoparticles show a certain degree of cytotoxicity, particularly against erythrocytes, their application in systemic administrations is limited to date. Intending to produce a more biocompatible formulation, we prepared cubosomes for the first time stabilized with a biodegradable polyphosphoester-analog of the commonly used Pluronic F127. The ABA-triblock copolymer poly(methyl ethylene phosphate)-block-poly(propylene oxide)-block-poly(methyl ethylene phosphate) (PMEP-b-PPO-b-PMEP) was prepared by organocatalyzed ring-opening polymerization of MEP. The cytotoxic features of the resulting formulation were investigated against two different cell lines (HEK-293 and HUVEC) and human red blood cells. The response of the complement system was also evaluated. Results proved the poly(phosphoester)-based formulation was significantly less toxic than that prepared using Pluronic F127 with respect to all the tested cell lines and, more importantly, hemolysis assay and complement system activation tests demonstrated its very high hemocompatibility. The potentially biodegradable poly(phosphoester)-based cubosomes represent a new and versatile platform for preparation of functional and smart nanocarriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.07.038 | DOI Listing |
Biomater Adv
January 2025
Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
Encapsulated BV6 and SM164, two bivalent second mitochondria-derived activator of caspase (Smac) mimetics, in etoposide (ETO)-lipopolymer nanoparticles (NPs) have been developed to deplete inhibitor of apoptosis proteins (IAP), impair DNA, and produce antagonistic effects on glioblastoma multiforme (GBM) in nude mice. The NPs, composed of cocoa butter (CB) and polyvinyl alcohol (PVA), were stabilized by glycerol monostearate and Pluronic F-127, and grafted with transferrin (Tf) and wheat germ agglutinin (WGA) to dock the blood-brain barrier (BBB) and degenerated dopaminergic neurons. The dual-targeting NPs increased the BBB permeability of BV6, SM164 and ETO via recognizing Tf receptor (TfR) and N-acetylglucosamine that are abundantly expressed on brain microvascular endothelial cells.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Department of Exact Sciences, State University of Santa Cruz - UESC, Rodovia Jorge Amado Km 16, CEP: 45662-900, Ilhéus - BA, Brazil.
Introduction: Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.
View Article and Find Full Text PDFAAPS J
January 2025
Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
Mitochondrial transplantation (MTx) offers a promising therapeutic approach to mitigate mitochondrial dysfunction in conditions such as ischemia-reperfusion (IR) injury. The quality and viability of donor mitochondria are critical to MTx success, necessitating the optimization of isolation protocols. This study aimed to assess a rapid mitochondrial isolation method, examine the relationship between mitochondrial size and membrane potential, and evaluate the potential benefits of Poloxamer 188 (P-188) in improving mitochondrial quality during the isolation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!