α-Cyperone inhibits the proliferation of human cervical cancer HeLa cells via ROS-mediated PI3K/Akt/mTOR signaling pathway.

Eur J Pharmacol

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563100, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College, Guangxi University, Nanning, 530004, PR China; School of Basic Medical Science, YouJiang Medical University for Nationaties, No. 98 Chengxiang Road, Baise, Guangxi, 533000, PR China. Electronic address:

Published: September 2020

Cervical cancer is the fourth leading killer of female cancer patients worldwide. Each year more than half a million women are diagnosed with cervical cancer and the disease results in over 300, 000 deaths. α-Cyperone is known as the principal active ingredient in the Cyperus rotundus (Family: Cyperaceae). However, the effects of α-Cyperone on cancers, especially on cervical cancer, are yet to be explored. In the present study, the underlying mechanism of the anti-tumor activity of α-Cyperone against HeLa cells was investigated. The results showed that α-Cyperone inhibited proliferation and induced apoptosis in HeLa cells. Mechanistically, α-Cyperone promoted HeLa cells apoptosis via a mitochondrial apoptotic pathway, which was proved by increased level of intracellular reactive oxygen species (ROS) and upregulated expression of cytochrome c, cleaved caspase-3, PARP, and Bax. Further RNA-sequencing revealed α-Cyperone inhibited the activation of PI3K/Akt/mTOR signaling pathway in HeLa cells, which confirmed by PI3K inhibitor and agonist. The PI3K inhibitor (LY294002) synergized with α-Cyperone in arresting the growth of HeLa cells, whereas the PI3K agonist (IGF-1) abrogated such an effect. Interestingly, the expression of PD-L1 was attenuated by both α-Cyperone and LY294002, while the supplement of IGF-1 rescued the low expression of PD-L1. In conclusion, our results reveal that the inhibitory effect of α-Cyperone on HeLa cell growth is triggered via the ROS-mediated PI3K/Akt/mTOR signaling pathway and closely related to a decline in the PD-L1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173355DOI Listing

Publication Analysis

Top Keywords

hela cells
24
cervical cancer
16
pi3k/akt/mtor signaling
12
signaling pathway
12
α-cyperone
10
ros-mediated pi3k/akt/mtor
8
α-cyperone hela
8
α-cyperone inhibited
8
pi3k inhibitor
8
expression pd-l1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!