Short-chain cello-oligosaccharides (COS; degree of polymerization, DP ≤ 6) are promising water-soluble dietary fibers. An efficient approach to their bottom-up synthesis is from sucrose and glucose using glycoside phosphorylases. Here, we show the intensification and scale up (20 mL; gram scale) of COS production to 93 g/L product and in 82 mol % yield from sucrose (0.5 M). The COS were comprised of DP 3 (33 wt %), DP 4 (34 wt %), DP 5 (24 wt %), and DP 6 (9 wt %) and involved minimal loss (≤10 mol %) to insoluble fractions. After isolation (≥95% purity; ≥90% yield), the COS were examined for growth promotion of probiotic strains. Benchmarked against inulin, trans-galacto-oligosaccharides, and cellobiose, COS showed up to 4.1-fold stimulation of cell density for , subsp. , subsp. , and but were less efficient with sp. This study shows the COS as selectively functional carbohydrates with prebiotic potential and demonstrates their efficient enzymatic production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458430PMC
http://dx.doi.org/10.1021/acs.jafc.0c02660DOI Listing

Publication Analysis

Top Keywords

short-chain cello-oligosaccharides
8
enzymatic production
8
growth promotion
8
promotion probiotic
8
cos
6
cello-oligosaccharides intensification
4
intensification scale-up
4
scale-up enzymatic
4
production selective
4
selective growth
4

Similar Publications

Apple bagasse and orange peel were subjected to high-pressure homogenization (HPH), enzymatic hydrolysis (EH) and their combination (HPHE) to study their effect on oligosaccharide production and in vitro fermentability. The application of a cellulase-pectinase mixture on the by-products generated significant quantities of cellobiose (COS-2) and pectin derived oligosaccharides (POS) which were identified as mainly methylated and acetylated oligogalacturonides with DP 2-5 (POS 2-5). When pre-treating the substrates with HPH, the release in orange peel was enhanced significantly leading to a POS content of 44.

View Article and Find Full Text PDF

Coffee oligosaccharides and their role in health and wellness.

Food Res Int

November 2023

Plantation Products, Spices and Flavour Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Coffee oligosaccharides (COS) are novel sources of prebiotics comprising manno-oligosaccharides, galacto-oligosaccharides, arabinoxylan-oligosaccharides, and cello-oligosaccharides. These oligosaccharides function as prebiotics, antioxidant-dietary fiber owing to important physicochemical and physiological properties, adjuvants, pharma, nutraceutical food, gut health, immune system boosting, cancer treatment, and many more. Research suggests COS performs prebiotic action, as it enhances gut health by promoting beneficial bacteria in the colon and releasing functional metabolites such as SCFAs.

View Article and Find Full Text PDF

Enzymatic production of cello-oligosaccharides with potential human prebiotic activity and release of polyphenols from grape marc.

Food Chem

March 2024

Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia. Electronic address:

Grape marc, the main winemaking byproduct, is an excellent source of bioactive polyphenols, such as anthocyanins, resveratrol and quercetin. An enzyme-catalysed treatment of marc was developed using endo-1,4-β-d-glucanase to release polyphenol O-glucosides and simultaneously generate the optimal concentration of water-soluble cello-oligosaccharides (COS), including cellopentaose, cellotriose, and cellobiose from the marc matrix. The prebiotic properties of marc hydrolysate rich in COS was assessed using human probiotic monocultures of Lactobacillus spp.

View Article and Find Full Text PDF

Modified dietary fiber from cassava pulp affects the cecal microbial population, short-chain fatty acid, and ammonia production in broiler chickens.

Poult Sci

January 2023

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand. Electronic address:

The objective of this study was to investigate the effects of modified dietary fiber from cassava pulp (M-DFCP) supplementation in broiler diets on cecal microbial populations, short-chain fatty acids (SCFAs), ammonia production, and immune responses. A total of 336, one-day-old male broiler chicks (Ross 308) were distributed over 4 dietary treatments in 7 replicate pens (n = 12 chicks) using a completely randomized design. Chicks were fed the control diet and 3 levels of M-DFCP (0.

View Article and Find Full Text PDF

Enzyme combinations producing short-chain cello-oligosaccharides (COS) as major bio-products from cellulose of Miscanthus Mx2779 accessed through different pretreatment methods were compared. Over short hydrolysis times, processive endoglucanase TfCel9a produced a high percentage of cellotetraose and cellopentaose and is synergistic with endoglucanase CcCel9m for producing short oligomers from amorphous cellulose but had low activity on untreated Miscanthus. Hydrolysis of the latter improved when these were combined with a mutant cellobio/triohydrolase OsCelC7(-105) and a lytic polysaccharide monooxygenase TrCel61a, a combination which also produced the highest COS yields from phosphoric acid swollen cellulose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!