Banana is an important food crop and source of income in Africa. Sustainable production of banana, however, is at risk because of pests and diseases such as Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). Foc can be disseminated from infested to disease-free fields in plant material, water and soil. Early detection of Foc using DNA technologies is thus required to accurately identify the fungus and prevent its further dissemination with plants, soil and water. In this study, quantitative (q)PCR assays were developed for the detection of Foc Lineage VI strains found in central and eastern Africa (Foc races 1 and 2), Foc TR4 (vegetative compatibility groups (VCG) 01213/16) that is present in Mozambique, and Foc STR4 (VCG 0120/15) that occurs in South Africa. A collection of 127 fungal isolates were selected for specificity testing, including endophytic Fusarium isolates from banana pseudostems, non-pathogenic F. oxysporum strains and Foc isolates representing the 24 VCGs in Foc. Primer sets that proved to be specific to Foc Lineage VI, Foc TR4 and Foc STR4 were used to produce standard curves for absolute quantification, and the qPCR assays were evaluated based on the quality of standard curves, repeatability and reproducibility, and limits of quantification (LOQ) and detection (LOD). The qPCR assays for Foc Lineage VI, TR4 and STR4 were repeatable and reproducible, with LOQ values of 10-3-10-4 ng/μL and a LOD of 10-4-10-5 ng/μL. The quantitative detection of Foc strains in Africa could reduce the time and improve the accuracy for identifying the Fusarium wilt pathogen from plants, water and soil on the continent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371176 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236110 | PLOS |
Physiol Plant
January 2025
Horticulture Crops Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, AREEO, Bandar Abbas, Iran.
In this research, we analyzed Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeats (ISSR) and Sequence-related amplified polymorphism (SRAP) markers to evaluate the genetic diversity of eighteen different onion genotypes with various resistant levels to FOC. The results showed that the polymorphism means between RAPD primers was 61.11 to 81.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.
View Article and Find Full Text PDFMicroorganisms
December 2024
School of Agriculture and Food Sustainability, The University of Queensland, St. Lucia, QLD 4072, Australia.
Fusarium wilt, caused by f. sp. (), poses a significant threat to global banana production.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
School of Nursing, University of Michigan, Ann Arbor, MI 48109, USA.
Explicit and implicit anti-fat biases are widespread among healthcare providers, leading to significant negative consequences for pregnant people, including poorer health outcomes. Fear of childbirth (FOC) can affect the length of labor, increase the risk of cesarean delivery, and negatively influence a new parent's perception of infant bonding. This study investigated the impact of perceived anti-fat bias on FOC among pregnant people.
View Article and Find Full Text PDFISA Trans
December 2024
Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt. Electronic address:
The paper presents a new sensor-less voltage and frequency control method for a stand-alone doubly-fed induction generator (DFIG) feeding an isolated load. The proposed control approach directly regulates the magnitude and angle of the rotor-flux vector rather than controlling rotor currents or voltages as in classic field oriented control (FOC). To accurately regulate the magnitude and frequency of stator voltage, two separate closed-loop based PI regulators are employed to evaluate the reference signals of the rotor flux vector magnitude and angle, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!