Mechanical overloading-induced nucleus pulposus (NP) cells senescence plays an important role in the pathogenesis of intervertebral disc degeneration (IVDD). The silent mating type information regulator 2 homolog-1 (SIRT1)-mediated pathway preserves the normal NP cell phenotype and mitochondrial homeostasis under multiple stresses. We aimed to investigate the role of SIRT1 in IVDD by assessing the effects of SIRT1 overexpression on high-magnitude compression-induced senescence in NP cells. High-magnitude compression induced cellular senescence and mitochondrial dysfunction in human NP cells. Moreover, SIRT1 overexpression tended to alleviate NP cell senescence and mitochondrial dysfunction under compressive stress. Given the mitophagy-inducing property of SIRT1, activity of mitophagy was evaluated in NP cells to further demonstrate the underlying mechanism. The results showed that SIRT1-overexpression attenuated senescence and mitochondrial injury in NP cells subjected to high-magnitude compression. However, depletion of PINK1, a key mitophagic regulator, impaired mitophagy and blocked the protective role of SIRT1 against compression induced senescence in NP cells. In summary, these results suggest that SIRT1 plays a protective role in alleviating NP cell senescence and mitochondrial dysfunction under high-magnitude compression, the mechanism of which is associated with the regulation of PINK1-dependent mitophagy. Our findings may provide a potential therapeutic approach for IVDD treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485741PMC
http://dx.doi.org/10.18632/aging.103587DOI Listing

Publication Analysis

Top Keywords

senescence mitochondrial
16
high-magnitude compression
12
mitochondrial dysfunction
12
high-magnitude compression-induced
8
senescence
8
compression-induced senescence
8
nucleus pulposus
8
pulposus cells
8
pink1-dependent mitophagy
8
role sirt1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!