A highly integrated electromechanical actuator was developed in this article, which aims at fulfilling the requirements of high power-to-weight ratio, high efficiency, high integration and low volume in military equipment. Three different transmission schemes were proposed for the integrated electromechanical actuator according to the differences in integration methods. Comparative analysis was conducted on the specific structures of the integrated electromechanical actuator and the categories and performance of the planetary roller screw, which is the key unit of the integrated electromechanical actuator. An integrated electromechanical actuator was designed based on the project requirements. A mathematical model was established and the system transfer function was derived. Based on this, a simulation model of the position loop system was established using the AMESim software and the effects of some related parameters, such as friction, backlash and stiffness, on the dynamic performance of the system were investigated. The related theory and simulation results were experimentally validated by a self-developed integrated electromechanical actuator research prototype combined with the related test system. The data obtained from the step response tests, sinusoidal response tests and repeat locating accuracy tests indicated that the developed integrated electromechanical actuator prototype is of rapid, accurate and stable position tracking capability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451041 | PMC |
http://dx.doi.org/10.1177/0036850420940923 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process.
View Article and Find Full Text PDFInt J Med Robot
February 2025
Department of Mechanical, Energy, Management and Transportation Engineering, University of Genova, Genova, Italy.
Background: Medical simulation is relevant for training medical personnel in the delivery of medical and trauma care, with benefits including quantitative evaluation and increased patient safety through reduced need to train on patients.
Methods: This paper presents a prototype medical simulator focusing on ocular and craniofacial trauma (OCF), for training in management of facial and upper airway injuries. It consists of a physical, electromechanical representation of head and neck structures, including the mandible, maxillary region, neck, orbit and peri-orbital regions to replicate different craniofacial traumas.
Adv Sci (Weinh)
December 2024
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
This paper addresses the trade-off between sensitivity and sensing range in strain sensors, while introducing additional functionalities through an innovative 4D printing approach. The resulting ultraflexible sensor integrates carbon nanotubes/liquid metal hybrids and iron powders within an Ecoflex matrix. The optimization of this composition enables the creation of an uncured resin ideal for Direct Ink Writing (DIW) and a cured sensor with exceptional electromechanical, thermal, and magnetic performance.
View Article and Find Full Text PDFPhys Rev E
November 2024
Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China.
Dielectric elastomer actuators (DEAs) are an emerging type of soft actuators based on intelligent electroactive polymers. Compared with conventional rigid actuators, DEAs can adapt to extreme hydrostatic pressures without any bulky protective vessels and, therefore, have demonstrated great promises in high-hydrostatic pressure applications such as deep-sea explorations. However, the effects of the enormous hydrostatic compressions on the mechanical and electromechanical coupling properties and electrical breakdown strengths of DEAs remain unclear due to the restrictions in the existing theoretical models and limitations in the experimental techniques developed for DEAs.
View Article and Find Full Text PDFACS Omega
December 2024
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Soft robots have developed gradually in the fields of portability, high precision, and low noise level due to their unique advantages of low noise and low energy consumption. This paper proposes an electromagnetically driven elastomer, using gelatin and glycerol (GG) as matrix materials and a mixture of multiwalled carbon nanotubes (MWCNTs) and Ag NWs (MA) as the conductive medium. Inchworm-inspired and spider-inspired soft robots have been developed, demonstrating fast movement speed, flexibility, and loading performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!