Thrombospondin-4 (TSP4) is a pro-angiogenic protein that has been implicated in tissue remodeling and local vascular inflammation. TSP4 and, in particular, its SNP variant, P387 TSP4, have been associated with cardiovascular disease. Macrophages are central to initiation and resolution of inflammation and development of atherosclerotic lesions, but the effects of the P387 TSP4 on macrophages remain essentially unknown. We examined the effects of the P387 TSP4 variant on macrophages in cell culture and in vivo in a murine model of atherosclerosis. Furthermore, the levels and distributions of the two TSP4 variants were assessed in human atherosclerotic arteries. In ApoE /P387-TSP4 knock-in mice, lesions size measured by Oil Red O did not change, but the lesions accumulated more macrophages than lesions bearing A387 TSP4. The levels of inflammatory markers were increased in lesions of ApoE /P387-TSP4 knock-in mice compared to ApoE mice. Lesions in human arteries from individuals carrying the P387 variant had higher levels of TSP4 and higher macrophage accumulation. P387 TSP4 was more active in supporting adhesion of cultured human and mouse macrophages in experiments using recombinant TSP4 variants and in cells derived from P387-TSP4 knock-in mice. TSP4 supports the adhesion of macrophages and their accumulation in atherosclerotic lesions without changing the size of lesions. P387 TSP4 is more active in supporting these pro-inflammatory events in the vascular wall, which may contribute to the increased association of P387 TSP4 with cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201901434RRRR | DOI Listing |
FASEB J
September 2020
Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA.
Thrombospondin-4 (TSP4) is a pro-angiogenic protein that has been implicated in tissue remodeling and local vascular inflammation. TSP4 and, in particular, its SNP variant, P387 TSP4, have been associated with cardiovascular disease. Macrophages are central to initiation and resolution of inflammation and development of atherosclerotic lesions, but the effects of the P387 TSP4 on macrophages remain essentially unknown.
View Article and Find Full Text PDFCell Death Dis
January 2020
Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA.
Thrombospondin-4 (TSP-4) attracted renewed attention recently as a result of assignment of new functions to this matricellular protein in cardiovascular, muscular, and nervous systems. We have previously reported that TSP-4 promotes local vascular inflammation in a mouse atherosclerosis model. A common variant of TSP-4, P387-TSP-4, was associated with increased cardiovascular disease risk in human population studies.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2015
From the Department of Molecular Cardiology (S.M., E.F., R.X., I.K., E.P., O.S.-A.), and Cole Eye Institute (S.Y., G.H.), Cleveland Clinic, OH; and ImageIQ Inc, Cleveland, OH (A.V.).
Objective: Thrombospondin-4 (TSP-4) is 1 of the 5 members of the thrombospondin protein family. TSP-1 and TSP-2 are potent antiangiogenic proteins. However, angiogenic properties of the 3 other TSPs, which do not contain the domains associated with the antiangiogeneic activity of TSP-1 and TSP-2, have not been explored.
View Article and Find Full Text PDFFASEB J
November 2005
Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins.
View Article and Find Full Text PDFBlood
December 2005
Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
High-throughput genomic technology identified an association between a single nucleotide polymorphism (SNP), a proline (P387) rather than the predominant alanine (A387) at position 387 in thrombospondin-4 (TSP-4) and premature myocardial infarction. The inflammatory hypothesis of atherosclerosis invokes a prominent role of leukocytes and cytokines in pathogenesis. As the expression of TSP-4 by vascular cells permits its exposure to circulating leukocytes, the interactions of human neutrophils (polymorphonuclear leukocytes [PMNs]) with both TSP-4 variants were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!