Background: Huntington's disease (HD) develops in individuals with extended cytosine-adenine-guanine (CAG) repeats within the huntingtin (HTT) gene, causing neurodegeneration and progressive motor and cognitive symptoms. The inclusion of mutant HTT carriers in whom overt symptoms are not yet fully manifest in therapeutic trials would enable the development of treatments that delay or halt the accumulation of significant disability.
Objectives: The present analyses assess whether screening prediagnosis (preHD) individuals based on a normalized prognostic index (PIN) score would enable the selection of prodromal preHD subjects in whom longitudinal changes in established outcome measures might provide robust signals. It also compares the relative statistical effect size of longitudinal change for these measures.
Methods: Individual participant data from 2 studies were used to develop mixed effect linear models to assess longitudinal changes in clinical metrics for participants with preHD and PIN-stratified subcohorts. Relative effect sizes were calculated in 5 preHD studies and internally normalized to evaluate the strength and consistency of each metric across cohorts.
Results: Longitudinal modeling data demonstrate the amplification of effect sizes when preHD subcohorts were selected by PIN score thresholds of >0.0 and >0.4. These models and relative effect sizes across 5 studies consistently indicate that the Unified Huntington's Disease Rating Scale total motor score exhibits the greatest change in preHD.
Conclusions: These analyses suggest that the employment of PIN scores to homogenize and stratify preHD cohorts could improve the efficiency of current outcome measures, the most robust of which is the total motor score. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818458 | PMC |
http://dx.doi.org/10.1002/mds.28222 | DOI Listing |
J Mov Disord
December 2024
Department of Neurology, MRC and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
The Korean Huntington's Disease Society (KHDS) has recently published a practical guide for clinical approach to patients with Huntington's disease (HD) in Korea in April issue of Journal of Movement Disorders this year.1 This article is the second practical guide particularly focused on 1) essential points of genetic counseling for families of HD covering issues of testing minors and prenatal/preimplantation testing; and 2) premanifest HD and useful laboratory investigations for assessing disease severity and progression. The latter part of this article deals with special issues of juvenile and very late-onset HD, and common comorbidities in HD patients.
View Article and Find Full Text PDFPharmacol Res
December 2024
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel. Electronic address:
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.
View Article and Find Full Text PDFExpert Opin Ther Pat
December 2024
Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Introduction: Neuroinflammation is correlated to neurodegenerative diseases like Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), Huntington Disease (HD) and Parkinson's disease (PD). A lot of recent research and patents are focused on the design and synthesis of arachidonic acid Lipoxygenase (ALOX) inhibitors for the treatment of neurodegenerative diseases.
Areas Covered: The survey covers natural products, synthesis, hybrids, and assessments of biological effects in biological studies as ALOX inhibitors.
Neurobiol Dis
December 2024
Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.
View Article and Find Full Text PDFJ Neurosci Res
December 2024
Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, School of Medical Science, Centre for Brain Research, University of Auckland, Auckland, New Zealand.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder traditionally characterized by the selective loss of medium spiny neurons in the basal ganglia. However, it has become apparent that white matter injury and oligodendrocyte dysfunction precede the degeneration of medium spiny neurons, garnering interest as a key pathogenic mechanism of HD. Oligodendrocytes are glial cells found within the central nervous system involved in the production of myelin and the myelination of axons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!