Mammalian sialidase Neu1 is involved in various physiological functions, including cell adhesion, differentiation, cancer metastasis, and diabetes through lysosomal catabolism and desialylation of glycoproteins at the plasma membrane. Various animal models have been established to further explore the functions of vertebrate Neu1. The present study focused on zebrafish (Danio rerio) belonging to Cypriniformes as an experimental animal model with neu1 gene deficiency. The results revealed that the zebrafish Neu1 desialyzed both α2-3 and α2-6 sialic acid linkages from oligosaccharides and glycoproteins at pH 4.5, and it is highly conserved with other fish species and mammalian Neu1. Furthermore, Neu1-knockout zebrafish (Neu1-KO) was established through CRISPR/Cas9 genome editing. Neu1-KO fish exhibited slight abnormal embryogenesis with the accumulation of pleural effusion; however, no embryonic lethality was observed. Although Neu1-KO fish were able to be maintained as homozygous, they showed smaller body length and weight than the wild-type (WT) fish, and muscle atrophy and curvature of the vertebra were observed in adult Neu1-KO fish (8 months). The expression patterns of myod and myog transcription factors regulating muscle differentiation varied between Neu1-KO and WT fish embryo. Expression of lysosomal-related genes, including ctsa, lamp1a, and tfeb were up-regulated in adult Neu1-KO muscle as compared with WT. Furthermore, the expression pattern of genes involved in bone remodeling (runx2a, runx2b, and mmp9) was decreased in Neu1-KO fish. These phenotypes were quite similar to those of Neu1-KO mice and human sialidosis patients, indicating the effectiveness of the established Neu1-KO zebrafish for the study of vertebrate Neu1 sialidase.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BCJ20200348DOI Listing

Publication Analysis

Top Keywords

neu1-ko fish
20
neu1-ko
9
neu1-knockout zebrafish
8
vertebrate neu1
8
adult neu1-ko
8
fish
7
neu1
6
zebrafish
5
establishment characterization
4
characterization neu1-knockout
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!