Here, we report the effect of polyethylene glycol (PEG)-induced molecular crowding (MC) on the catalytic activity and thermal stability of β-galactosidase (β-Gal). The β-Gal-catalyzed hydrolysis of -nitrophenyl-β-d-galactopyranoside followed a Michaelian kinetics at [PEG] ≤ 25% w/v and positive cooperativity at higher concentrations (35% w/v PEG). Compared with dilute solutions, in the MC media, β-Gal exhibited stronger thermal stability, as shown by the increase in the residual activity recovered after preincubation at high temperatures (, 45 °C) and by the slower inactivation kinetics. Considering the effects of water thermodynamic activity on the reaction kinetics and protein structure and the effect of the exclusion volume on protein conformation, we suggest that changes in the protein oligomerization state and hydration could be the responsible for the behavior observed at the highest MC levels assayed. These results could be relevant and should be taken into account in industrial food processes applying β-Gal from .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.0c02316 | DOI Listing |
Acta Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
Aflatoxin M1 (AFM1) is known to be carcinogenic, mutagenic, and teratogenic and poses a serious threat to food safety and human health, which makes its surveillance critical. In this study, an indirect competitive ELISA (icELISA) based on a nanobody (Nb M4) was developed for the sensitive and rapid detection of AFM1 in dairy products. In our previous work, Nb M4 was screened from a Bactrian-camel-immunized phage-displayed library.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Materials Science, University of Stuttgart, D-70569, Stuttgart, Germany.
The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!