Calcineurin inhibitors ameliorate PAN-induced podocyte injury through the NFAT-Angptl4 pathway.

J Pathol

Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, PR China.

Published: November 2020

Podocyte injury plays a vital role in proteinuria and nephrotic syndrome. Calcineurin (CaN) inhibitors are effective in reducing proteinuria. However, their molecular mechanism is still not fully understood. Angiopoietin-like-4 (ANGPTL4) is a secreted protein that mediates proteinuria in podocyte-related nephropathy. In this study, we established a puromycin aminonucleoside (PAN)-induced minimal-change disease (MCD) rat model and a cultured podocyte injury model. We found that CaN inhibitors protected against PAN-induced podocyte injury, accompanied by an inhibition of Nfatc1 and Angptl4 both in vivo and in vitro. Nfatc1 overexpression and knockdown experiments indicated that Angptl4 was regulated by Nfatc1 in podocytes. ChIP assays further demonstrated that Nfatc1 increased Angptl4 expression by binding to the Angptl4 promoter. In addition, overexpression and knockdown of Angptl4 revealed that Angptl4 directly induced rearrangement of the cytoskeleton of podocytes, reduced the expression of synaptopodin, and enhanced PAN-induced podocyte apoptosis. Furthermore, in a cohort of 83 MCD and 94 membranous nephropathy (MN) patients, we found increased expression of serum ANGPTL4 compared to 120 healthy controls, and there were close correlations between serum ANGPTL4 and Alb, urinary protein, urinary Alb, eGFR, Scr, and BUN in MCD patients. No obvious correlation was found in MN patients. Immunofluorescence studies indicated that increased ANGPTL4 in MCD and MN patients was located mostly in podocytes. In conclusion, our results demonstrate that CaN inhibitors ameliorate PAN-induced podocyte injury by targeting Angptl4 through the NFAT pathway, and Angptl4 plays a vital role in podocyte injury and is involved in human podocyte-related nephropathy. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.5512DOI Listing

Publication Analysis

Top Keywords

podocyte injury
24
pan-induced podocyte
16
angptl4
12
calcineurin inhibitors
8
inhibitors ameliorate
8
ameliorate pan-induced
8
plays vital
8
vital role
8
podocyte-related nephropathy
8
overexpression knockdown
8

Similar Publications

PM2.5-induced oxidative stress upregulates PLA2R expression in the lung and is involved in the pathogenesis of membranous nephropathy through extracellular vesicles.

Front Pharmacol

December 2024

Renal Division, State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Background: Particulate matter (PM2.5) has been implicated in the development of membranous nephropathy (MN), but the underlying mechanism has yet to be fully understood. Oxidative stress is an essential factor of PM2.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetic nephropathy (DN) is a common complication of diabetes, and Colquhounia Root Tablet (CRT) has shown potential therapeutic effects, although its mechanisms are not fully understood.
  • Using various databases, researchers identified 163 therapeutic targets of CRT related to DN and found key targets like STAT3 and IL6 through protein-protein interaction analysis.
  • The study highlighted the AGEs/RAGE signaling pathway as significant for CRT's effectiveness against DN and confirmed its protective effects on kidney cells via experimental treatments, although further studies are required to assess the safety and efficacy in real-life scenarios.
View Article and Find Full Text PDF

Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.

View Article and Find Full Text PDF

Purpose: This study aimed to examine the impact of APS on acute kidney injury induced by rhabdomyolysis (RIAKI), exploring its association with macrophage M1 polarization and elucidating the underlying mechanisms.

Methods: C57BL/6J mice were randomly assigned to one of three groups: a normal control group, a RIAKI model group, and an APS treatment group. Techniques such as flow cytometry and immunofluorescence were employed to demonstrate that APS can inhibit the transition of renal macrophages to the M1 phenotype in RIAKI.

View Article and Find Full Text PDF

Podocyte injury is a major biomarker of primary glomerular disease that leads to massive proteinuria and kidney failure. Ginsenoside Rk1, a substance derived from ginseng, has several pharmacological activities, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. In this study, our goal is to investigate the roles and mechanisms of ginsenoside Rk1 in podocyte injury and acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!