Debaryomyces hansenii comes of age as a new potential probiotic for terrestrial and aquatic animals. Probiotic properties, including inmunostimulatory effects, gut microbiota modulation, enhanced cell proliferation and differentiation, and digestive function improvements have been related to the oral delivery of D. hansenii. Its functional compounds, such as cell wall components and polyamines, have been identified and implicated in its immunomodulatory activity. In addition, in vitro studies using immune cells have shown standpoints on the possible recognition, regulation, and effector immune mechanisms stimulated by this yeast. This review describes historic, cutting-edge research findings, implications, and perspectives on the use of D. hansenii as a promising probiotic for animals. KEY POINTS: • Debaryomyces hansenii has probiotic effects in terrestrial and aquatic animals. • Nutritional effects could be associated to probiotic D. hansenii strains. • β-D-Glucan and polyamines from D. hansenii are associated to probiotic properties. • Adoption by the industry is expected in the next years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-020-10780-z | DOI Listing |
Mar Pollut Bull
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266100, China. Electronic address:
The excessive use of antibiotics in mariculture has surpassed permitted levels, leading to their release into surrounding waters and accumulation in cultured organisms, which poses risks to human health and highlighting the urgent need for alternatives to reduce antibiotic use. Therefore, the present study aimed to test four microbes including Debaryomyces hansenii, Ruegeria mobilis, Lactobacillus plantarum and Bacillus subtilis, on lowering Vibrio, promoting population increase and survival of Brachionus plicatilis. The digestive enzymes activity including α-amylase, lipase and protease, microbial retention and biochemical composition of rotifers were analyzed.
View Article and Find Full Text PDFFoods
January 2025
Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China.
The effect of SH4, a typical aroma enhancer, on flavor formation of the dry fermented sausage was investigated using gas chromatography-mass spectrometry and metagenomic sequencing. The results showed that inoculation with SH4 promoted volatile compound formation from carbohydrate and amino acid metabolism and accelerated ester synthesis. The enzymes, genes, and microorganisms involved in the formation pathway of volatile compounds based on microbial metabolism were predicted and constructed into a metabolic pathway network.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science, Université Laval, Québec, QC G1V 0A6, Canada.
Porcine blood, a significant byproduct of the pork industry, represents a potential source of antimicrobial peptides (AMPs). AMPs offer a promising alternative to chemical antimicrobials, which can be used as natural preservatives in the food industry. AMPs can exhibit both antibacterial and/or antifungal properties, thus improving food safety and addressing the growing concern of antibiotic and antifungal resistance.
View Article and Find Full Text PDFArch Microbiol
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.
Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.
View Article and Find Full Text PDFMicroorganisms
December 2024
Traditional Food Research Group, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea.
The microbial community of a soy sauce is one of the most important factors in determining the sensory characteristics of that soy sauce. In this study, the microbial communities and sensory characteristics of twenty samples of Korean soy sauce () were investigated using shotgun metagenome sequencing and descriptive sensory analysis, and their correlations were explored by partial least square (PLS) regression analysis. The metagenome analysis identified 1332 species of bacteria, yeasts, molds, and viruses across 278 genera, of which , , and accounted for more than 80% of the total community.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!