Structural properties of possible interstellar valence anions of the series HCN (n = 3, 5, 7, 9).

Phys Chem Chem Phys

University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, PAC 105305, 11158 Belgrade, Serbia.

Published: August 2020

In this contribution we investigate the structural properties of stable anions of small carbon clusters, with one nitrogen and one hydrogen atoms attached to the C-cluster, to surmise their possible existence in the Interstellar Medium (ISM). Many possible configurational (geometrical) isomers with positive vertical electron detachment values are presented, and arranged according to their relative energy. Specific attention is paid to the structures of the lowest-energy valence isomers, the chain-structures of HCN and HCN anions with quasilinear and linear geometry, respectively. They exhibit relatively large permanent dipole moments (2.697 and 5.034 Debye) and adiabatic electron affinities (AEAs) of 1.13 and 1.35 eV. Isomers of the HNC family and many branched structures are possible stable species viable for detection in the ISM.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp02666bDOI Listing

Publication Analysis

Top Keywords

structural properties
8
properties interstellar
4
interstellar valence
4
valence anions
4
anions series
4
series hcn
4
hcn contribution
4
contribution investigate
4
investigate structural
4
properties stable
4

Similar Publications

Tyrosinase is a rate-limiting enzyme for melanogenesis and abnormal melanin production can be controlled by utilizing tyrosinase inhibitory substances. To develop potent and safe inhibitors of tyrosinase, complex tannins a narrowly distributed plant polyphenols were prepared from the fruit peel of Euryale ferox (EPTs) and then structurally characterized, as well as investigated for their inhibitory effects and the involved mechanisms against tyrosinase activity and melanogenesis. The structures of EPTs were established to consist of 63.

View Article and Find Full Text PDF

Starch phosphorylation - A new perspective: A review.

Int J Biol Macromol

January 2025

Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany. Electronic address:

The phosphorylation of the storage carbohydrates, starch and glycogen, is a process that is fundamental to their physicochemical properties and their turnover. Therefore, the interest utilising phosphorylation as a biotechnological tool to customize polysaccharides has risen permanently. Today, the phosphoesterification of both carbohydrate forms is much better understood.

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

Extension of shelf-life of mangoes using PLA-cardanol-amine functionalized graphene active films.

Int J Biol Macromol

January 2025

Food Packaging Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India. Electronic address:

Multifunctional PLA films were fabricated through the solution casting method by incorporating cardanol oil (CA) and amine-functionalized graphene (AFG). The effect of the CA, and AFG on the structural, mechanical, thermal, thermo-mechanical and antioxidant properties of PLA films were investigated. FTIR analysis of PLA-CA films showed distinct peak positions at 1590 cm corresponding to the aromatic CC bonds of CA, showing that CA is compatible with the PLA.

View Article and Find Full Text PDF

Utilization of structure-specific lignin extracted from coconut fiber via deep eutectic solvents to enhance the functional properties of PVA nanocomposite films.

Int J Biol Macromol

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.

This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!