Our society is critically dependent on lithium-ion batteries (LIBs) as a power source for portable electronic gadgets. One of the major problems with these batteries is the degradation of the materials inside them. In addition to the reduced cell life, building-up of these degraded products inside the cells is very detrimental to the safe operation. Herein, we report the synthesis and characterization of a novel thiourea-based room temperature ionic liquid (IL), 3-heptyl-1-(3-(3-heptyl-3-phenylthioureido)propyl)-1-imidazole-3-ium hexafluorophosphate. Its electrochemical and thermal properties including transport phenomena have been studied. It is proposed to be used as a nominal additive to commercially used electrolytes, ethylene carbonate and di-methyl carbonate mixtures. The comparative performance characteristics of the LIBs in the presence and the absence of this IL additive have been demonstrated with a traditional lithium nickel cobalt manganese oxide cathode (NMC111), a graphite anode, and an ethylene carbonate and di-methyl carbonate (1:1, v/v) electrolyte. It is further demonstrated that use of this electrolyte additive in batteries helps to address some of the major concerns of the conventional electrolytes such as safety issues and cycling performance as well as coulombic efficiency with enhanced discharge capacities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364708 | PMC |
http://dx.doi.org/10.1021/acsomega.0c01565 | DOI Listing |
Phytomedicine
December 2024
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China. Electronic address:
Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.
Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.
Sci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFChemistry
December 2024
Université de Liège: Universite de Liege, Laboratory of Organometallic Chemistry and Homogeneous Catalysis, Institut de chimie B6a, Sart-Tilman, 4000, Liege, BELGIUM.
Thirteen imidazolium iodides bearing benzyl, mesityl, or 2,6-diiso-propyl-phenyl substituents on their nitrogen atoms, and C1 to C4 alkyl chains on their C2 carbon atom were readily deuterated with D2O as a cheap and non-toxic deuterium source in the presence of Cs2CO3, a weak, innocuous, inorganic base. The isotopic exchange proceeded quickly and efficiently under mild, aerobic conditions to afford a range of aNHC and NHO precursors regioselectively labeled on their C2α exocyclic position and/or C4=C5 heterocyclic backbone. A "carbene-free" mechanism was postulated, in which the carbonate anion acts as a catalyst to activate an exocyclic, acidic C-H bond and ease a deuterium transfer from D2O to the imidazolium salt in a concerted fashion.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!